POSITIONIER- UND BAHNSTEUERUNG MCU-G3 TOOLSET-SOFTWARE

MCFG FÜR WINDOWS

Stand: 29.05.2015, MCFG-Version: 2.5.3.99

1	Das Hilf	sprogramm <i>mcfg.exe</i>		7
	1 1	Installation und Finrichtung ei	ner Arbeitsumgebung	7
		1 1 1 Hardware-Treiber für	die Steuerungsbaugruppe installieren	7
		1 1 2 Miniport-Treiber für äll	ere Windows Versionen installieren	7
		1.1.3 Arbeitsumgebung einr	ichten	8
		1.1.3.1 Auswahl de	r SYSTEM.DAT-Datei	8
		1132 Auswahl de	s RWMOS FLF-Datei	
	12	MCEG installieren / aktualisier	en	
	1.3	MCFG Starten		9
	1.4	Projektparameter einrichten		.10
		1.4.1 Weitere Projektoption	en	.10
		1.4.1.1 Use Web S	ervices	.11
	1.5	Steuerung booten		.12
	1.6	Konfigurationsfehler		.13
	1.7	Bedienung von mcfa.exe		.14
		1.7.1 Hilfsbildschirme		.14
		1.7.2 Editieren von System	Daten [File] [System Data]	.14
		1.7.2.1 System Dat	en, Registerseite Axis specific parameters	.15
		1.7.2.1.1 Syı	nbolischer Achsname	.15
		1.7.2.1.2 Mo	tor-Typ	.15
		1.7.2.1.3 Acl	nsen-Typ	.15
		1.7.2.1.4 Ein	heit zur Anzeige der Positionsregister	.16
		1.7.2.1.5 An:	zeigegenauigkeit der Positionsregister	.16
		1.7.2.1.6 Enl	koder-Striche oder Anzahl Schritte bei Schrittmotorachsen	16
		1.7.2.1.7 Ge	triebefaktor	.16
		1.7.2.1.8 Nu	lipunktverschiebungen	.16
		1.7.2.1.9 Ma	ximaler Schleppfenier	17
			Twate-Enologen	17
		1722 System Dat	on Pagistersaite Motion parameters	10
		17221 loc	r (Filoang) -Parameters	18
		17222 Ho	ming (Referenzfahrt) -Parameters	18
		1.7.2.2.3 Su	pervisory (Überwachung) -Parameters	.19
		1.7.2.3 System Dat	en. Registerseite Motor specific parameters bei Servo Achsen.	19
		1.7.2.3.1 Filt	erparameter	.19
		1.7.2.3.2 Ste	llgrößenbegrenzung	.19
		1.7.2.3.3 Ste	Ilgrößenkompensation	.20
		1.7.2.3.4 Ste	Ilgröße invertieren	.20
		1.7.2.3.5 Zäl	nlrichtung ändern	.20
		1.7.2.3.6 Pol	arität des Indexsignals	.20
		1.7.2.4 System Dat	en, Registerseite Motor specific parameters bei Schrittmotor	
		Achsen		.21
		1.7.2.4.1 Sta	Int-Stop-Frequenz	.21
		1.7.2.4.2 Ste	ugroisenbegrenzung	21
			sigioise inventieren	21
		1.7.2.4.4 Zal 17275 Dal	arität des Indevsionals	21
		17246 Va	wendung der Enkoderrückmeldung	22 22
		1725 System Dat	en Registerseite Digital Innuts	22
		1.7.2.5 1 Inv	ertieren der MCU-G3 Digitaleingänge	.24
		1.7.2.6 System Dat	en. Registerseite Digital Outputs	.25
			,	

	1.7.2	.6.1 Grundzustand der MCU-G3-Digitalausgänge	26
	1.7.2.7	Systemdaten speichern [Save Changes]	26
1.7.3	Motion To	pols	28
	1.7.3.1	Punkt zu Punkt-Bewegungen ausführen	28
	1.7.3.2	Registerkarte CL Response	30
	1.7.3.3	Registerkarte OL Response	30
	1.7.3.4	Registerkarte Digital Filter	31
1.7.4	Grafische	System-Analyse	32
	1.7.4.1	Setup für die grafische Systemanalyse	32
	1.7.4.2	Grafik-Analyse-Fenster	33
	1.7.4.3	Skalierung des Grafik-Bildschirms [Graph Scale Parameters]	33
	1.7.4.4	Aufzeichnen von Achsbewegungen [Latch Start]	34
	1.7.4.5	Grafen anzeigen [Update Screen]	34
	1.7.4.6	Grafen speichern [SAVE]	34
	1.7.4.7	Zoomen	34
	1.7.4.8	Nullpunkte setzen	34
	1.7.4.9	Beschleunigungen berechnen	34
	1.7.4.10	Reglerparameter für Stromgesteuerte Systeme berechnen	35
	1.7.4.11	Anzeige des Schleppfehlerverlaufs	35
	1.7.4.12	Anzeige des Verlaufs der Stellgrößenausgabe	35
1.7.5	Der integr	ierte Text-Editor	36
	1.7.5.1	Die Kopfzeile des Editorfensters	36
	1.7.5.2	Die Statuszeile	37
	1.7.5.3	Editor-Kommandos	37
	1.7.5.4	Spezialfunktionen des Editors CNC-Edit	37
	1.7.5	.4.1 Menu Compile	37
		1.7.5.4.1.1 Syntaktische SAP-Programmüberprüfung [Syntax Check]	37
		1.7.5.4.1.2 Syntax-Uberprüfung und Erzeugung eines CNC-Files [File].	37
	1.7.5	.4.2 Menu Run	37
		1.7.5.4.2.1 Programmablaukontrolle für eine CNC-Task starten [Trace	20
		1 7 5 4 2 2 CNC Tack aphalton [Stop current colocted CNC Tack]	30 20
		1.7.5.4.2.2 CNC-Task annalen [Stop current Selected CNC-Task]	38
	175	4.3 Alle CNC-Tasks erneut starten [Restart all CNC-Tasks]	
	17.0	4.4 Alle CNC-Tasks stoppen [Stop all CNC-Tasks]	
	1.7.5	Alle CNC-Programme fortsetzen [Continue all CNC-Tasks]	
	1.7.5	.4.6 Menu Spooler	38
	1.7.5	.4.7 Menu Setup	38
		1.7.5.4.7.1 Bahnparameter setzen [Set CNC-specific parameter]	38
		1.7.5.4.7.2 Compiler-Betriebsart setzen (in Vorbereitung!) [Set Compile	r
		Mode]	39
		1.7.5.4.7.3 CNC-Task auswählen [Select CNC-Task]	39
	1.7.5	.4.8 Menu Display	39
	1.7.5	.4.9 Menu System	39
470	1.7.5.5 Diala afrad	Programmaustunrung im Einzeischritt-Betrieb	39
1.7.0	Dialogiun	Ashaanstatus anzaigan [Onan Avia Status Window]	39
	1.7.0.1	Achsenstatus Anzeige heenden [Cleas Avis Status Window]	39
	1.7.0.2	Achsenstatus-Anzeige beenden [Close Axis Status Window]	40 40
	1764	Ritinformationan des Acheanstatus-Register avet anzeigen [Display Data	40 iled
	1.7.0.4	Axis Status]	40
	1.7.6.5	Anzeige der Digital-Eingänge und Statusinformationen [Show Inputs / Status	atus]41
	1.7.6.6	Anzeige von CNC-Task-Status und Common-Variablen [Show CNC-Tas	k ,
		Status / Variables]	41
	1.7.6.7	Editieren der Digital-Ausgänge [Edit Outputs]	41

	1.7.6.8	System Rücksetzen [System Reset]	42
1.7.7	Automatik	Funktionen [Automatic Functions Menu]	42
	1.7.7.1	CNC-Programm laden [Download CNC-Program]	42
	1.7.7.2	CNC-Task erneut starten [Restart current selected CNC-Task]	42
	1.7.7.3	CNC-Task stoppen [Stop current selected CNC-Task]	42
	1.7.7.4	CNC-Task fortsetzen [Continue current selected CNC-Task]	42
	1.7.7.5	Alle CNC-Tasks erneut starten [Restart all CNC-Tasks]	42
	1.7.7.6	Alle CNC-Tasks stoppen [Stop all CNC-Tasks]	42
	1.7.7.7	Alle CNC-Programme fortsetzen [Continue all CNC-Tasks]	42
	1.7.7.8	Svstem Rücksetzen	43
	-		-

2 Anhang 44

2.1	Abbildungsverzeichnis	.44
2.2	Tabellenverzeichnis	.44

1 Das Hilfsprogramm *mcfg.exe*

Wozu dient dieses Handbuch?	Dieses Dokument enthält alle notwendigen Angaben zur Bedienung des MCFG- Programms, Bestandteil der TOOLSET Software für die MCU-G3 Positionier- und Bahnsteuerungen. Nachfolgend werden die einzelnen Menüs und Bildschirme der MCFG-Anwendung erläutert.
Welche Geräte gehören zur MCU-G3-Familie?	Bei der MCU-G3-Familie handelt sich um Positionier- und Bahnsteuerungen der dritten Generation. Hierzu gehören z.Zt. die Positionier- und Bahnsteuerungen MCU-3000 (APCI-8001), MCU-6000 (APCI-8401) und MCU-3400C (CPCI-8401). Weitere Geräte sind in Planung.
Welche Betriebssysteme werden unterstützt?	Das MCFG kann unter folgenden Betriebssystemen zum Einsatz kommen: Windows 95/98/Me, Windows NT4.0, Windows 2000 und Windows XP.

Das Hilfsprogramm *mcfg.exe* (im weiteren Verlauf **MCFG** genannt) ist als Windows-Anwendung im MDI-Standard ausgeführt und bietet eine leistungsfähige Inbetriebnahme-, Diagnose- und Konfigurations-Oberfläche für die Steuerungen der MCU-G3-Familie. In der MCFG-Anwendung ist weiterhin eine komfortable Programmierumgebung für die Stand-Alone-Application (SAP) -Programmentwicklung enthalten.

1.1 Installation und Einrichtung einer Arbeitsumgebung

Zur Benutzung des MCFG-Programms gelten einige Voraussetzungen. An dieser Stelle erfolgt eine Anleitung zur Installation und Einrichten einer Arbeitsumgebung.

1.1.1 Hardware-Treiber für die Steuerungsbaugruppe installieren

Für Windows-Versionen ab XP muss vor jeder Verwendung einer Baugruppe der Hardwaretreiber installiert werden. Dieser befindet sich auf der Toolset-CD im Verzeichnis \inf für die jeweiligen Betriebssystemversionen.

1.1.2 Miniport-Treiber für ältere Windows Versionen installieren

Dies ist nur notwendig bei Windows 95/98/ME NT und 2000. Ansonsten darf dieser Treiber nicht mehr verwendet werden.

Sofern der Miniporttreiber noch nicht installiert wurde, sollte dies an erster Stelle erfolgen. Der Miniporttreiber "RNWMC (sys, vxd, dll)" beinhaltet einen leistungsfähigen Gerätetreiber der Hardwarezugriffe auf die MCU-G3 Geräte ermöglicht. Der Treiber kann zur Zeit unter folgenden Windows-Betriebssystemen installiert werden: Windows 95 / 98 / Me, Windows NT4.0, Windows 2000 und Windows 2003 Server.

Der Miniporttreiber befindet sich auf der "MCU-G3 TOOLSET CD-ROM" im Unterverzeichnis *Miniport*. Zur Installation muss dort das Programm *ksetup.exe* aufgerufen werden.

Wenn der Miniport-Treiber verwendet wird, dann muss als Hardwaretreiber das File McuG3.inf installiert werden (\rightarrow kwdm.sys).

1.1.3 Arbeitsumgebung einrichten

Im weiteren Verlauf benötigt das MCFG-Programm mindestens zwei Dateien. Es empfiehlt sich hierzu ein lokales Arbeitsverzeichnis auf der Festplatte anzulegen. Dieses lokale Arbeitsverzeichnis wird im weiteren Verlauf mit **LA** bezeichnet. Im LA sollten die Dateien *system.dat* und *rwmos.elf* abgelegt werden.

Die Datei *rwmos.elf* ist das Betriebssystem der Steuerungsbaugruppe und muß mindestens einmal pro PC-Start an die Steuerung übertragen werden (Boot der Steuerung) damit diese überhaupt verwendet werden kann.

Die Datei *system.dat* ist eine Binärdatei und enthält die Einstellungen aus mcfg. Beim Booten der Steuerung wird diese Systemdatei an die Steuerung übertragen. Somit werden der Steuerung die Einstellungen des Anwenders mitgeteilt.

1.1.3.1 Auswahl der SYSTEM.DAT-Datei

Die Systemdatei kann auf mehrere Methoden erzeugt oder bezogen werden. Für Neuanwender sind dies die Methoden Kopieren oder Erzeugen. Für Umsteiger oder bei einem Versionswechsel die Konvertierungsmethode.

- Kopieren von der "MCU-G3 TOOLSET CD-ROM". Im Unterverzeichnis *Firmware & System.dat Files* sind für die spezifischen Steuerungstypen weitere Unterverzeichnisse angelegt. In diesen befinden sich die jeweiligen *system.dat*-Files. <u>Achtung: Nach dem Kopieren muss unbedingt der Schreibschutz der Datei entfernt werden!</u>
- Erzeugen einer system.dat mit dem Hilfsprogramm sysgen.exe. Im Unterverzeichnis Toolset der "MCU-G3 TOOLSET CD-ROM" befindet sich das Hilfsprogramm sysgen.exe. Dieses sollte ins LA kopiert werden und in einer Windowskonsole mit einem der Parameter [MCU3000, MCU6000 oder MCU3400] aufgerufen werden.

Folgende Steuerungspaarungen sind dabei kompatibel: MCU3000 - APCI8001, MCU6000 - APCI8401 und MCU3400-CPCI-8001. Eine aktuelle Version des sysgen.exe-Programm kann alternativ vom Internet <u>Download SYSGEN.EXE</u> geladen werden.

Nach Erzeugung der system.dat Datei kann die sysgen.exe-Anwendung wieder im LA gelöscht werden.

 Konvertieren einer bereits vorhanden Systemdatei mit einer älteren Version oder einem anderem Steuerungstyp. Im Unterverzeichnis *Toolset* der "MCU-G3 TOOLSET CD-ROM" befindet sich das Hilfsprogramm *sysconv.exe*. SYSCONV gestattet ebenso die Konvertierung von Systemdateien von MCU-G2-Controlleren wie z.B. die MCU-3T (PA8000). SYSCONV sollte ins LA kopiert werden und in einer Windowskonsole mit einem der Parameter [/MCU-3000, /MCU-6000 oder /MCU3400] aufgerufen werden.

Folgende Steuerungspaarungen sind dabei kompatibel: MCU-3000 – APCI-8001, MCU-6000 – APCI-8401 und MCU-3400C - CPCI-8001. Eine aktuelle Version des sysconv.exe-Programms kann alternativ vom Internet <u>Download SYSCONV.EXE</u> geladen werden.

Nach Erzeugung der system.dat Datei kann die sysconv.exe-Anwendung wieder im LA gelöscht werden.

 Projektinstallation eines kompletten Programmpaketes wie z.B. McuWIN. Bei der Installation der Programmieroberfläche McuWIN wird ein Projektverzeichnis angelegt. In diesem Verzeichnis befinden sich nach der Installation die Dateien System.dat und RWMOS.ELF (siehe unten). Bei der Installationsprozedur wird die Umgebung von mcfg gleich auf diese Dateien eingerichtet, sofern mcfg zuvor installiert wurde.

1.1.3.2 Auswahl des RWMOS.ELF-Datei

Im Unterverzeichnis *Firmware & System.dat Files* der "MCU-G3 TOOLSET CD-ROM" sind für die spezifischen Steuerungstypen weitere Unterverzeichnisse angelegt. In diesen befinden sich die jeweiligen *rwmos.elf*-Files. Die entsprechende Datei sollte ins LA kopiert werden.

Die Arbeitsumgebung ist nach diesen Schritten eingerichtet. Nun kann die mcfg.exe-Anwendung installiert werden.

1.2 MCFG installieren / aktualisieren

Das Toolset-Programm *mcfg.exe* befindet sich auf der "MCU-G3 TOOLSET CD-ROM" im Unterverzeichnis *Mcfg.* Zur Installation kann dort das Installations-Programm *setup.exe* aufgerufen werden. Alternativ kann eine aktuelle Version (mcfg.exe) vom Internet <u>Download mcfg Installationsdatei</u> geladen werden.

Achtung: Beim Aktualisieren der MCFG-Anwendung auf eine neue Version muss zuvor die alte MCFG-Anwendung deinstalliert werden. Gegebenfalls müssen zuvor sensible Daten wie INI-Dateien, system.dat-Datei oder andere wichtige vom Anwender erstellte Dateien zuvor gesichert werden.

1.3 MCFG Starten

Beim Start der MCFG-Anwendung erscheint nach einer Erstinstallation beim Aufruf folgender Bildschirm:

Abbildung 1-1: Startbildschirm nach einer Erstinstallation

File Selection	×
No valid system file (system.dat) found! Please select Notice: For more information see help file (mcfg.hlp)	Quit
Topic: Important Notice, How to start!	

Damit die MCFG-Anwendung fortgesetzt werden kann, ist zunächst eine Systemdatei (system.dat) aus dem LA auszuwählen und mit OK zu quittieren.

1.4 Projektparameter einrichten

Die MCFG-Anwendung unterstützt eine Projektbezogene Systemdatenverwaltung. Dazu werden verschiedene Zustände und Vorgaben in einer Projektdatei (INI-File) gespeichert.

Abbildung	1-2:	Projek	tparame	eter festl	egen

🚧 MCFG - MCFG-DEMO.INI [Demo Mode]	_ 🗆 🗵
<u>File Edit Window View Tools Help</u>	
C:\LA\MCFG-DEMO.INI Environment Graphic Hardware System Files Parameter System Filename (system.dat): C:\LA\System.dat Operating System Filename (rwmos.elf / rwtos.btl): C:\LA\rwmos.elf	
Autosave Log Messages Web Services Use Web Services	ices

Über die Menüpunkte [File][Project Parameter] können diverse projektspezifische Einstellungen vorgenommen werden. Dazu gehört die im LA-Verzeichnis abgelegte Systemdatei (system.dat) und Steuerungsspezifische Betriebssystemsoftware (rwmos.elf). Diese beide Dateien sollten in jedem Fall ausgewählt werden.

1.4.1 Weitere Projektoptionen

Die Option "Autosave Desktop" sichert den aktuellen Desktop der MCFG-Anwendung und stellt ihn beim nächsten Start von MCFG wieder her.

Unter Log Messages können verschiedene Stufen der Fehlerbehandlung selektiert werden.

Die Option Web Services kann aktiviert werden, wenn eine Steuerungsbaugruppe Remote über eine Netzwerkverbindung angesprochen werden soll, die z.B. in einem Linux-System installiert ist.

Auf der Registerkarte "Graphic" können die Anzeigeoptionen für den Grafik-Anzeige-Bildschirm eingestellt werden.

Hardwareabhängige Zusatzoptionen lassen sich auf der Registerkarte Hardware anwählen und aktivieren.

1.4.1.1 Use Web Services

Wenn im Fenster Project Parameter die Option "Use Web Services" gesetzt wird, eröffnet sich folgender Eingabedialog:

🕅 C:\McuWIN\mcfg	j.ini	
Web Services Graph	nic Hardware	
System File Name:	/mnt/nfs/McuG3/Applications/McuWIN/System.dat	
OS File Name:	/mnt/nfs/McuG3/Applications/McuWIN/rwmos.elf 🕞 🗖 Local File	
Device File Name:	/dev/mcug3/c/0	
Tmp. Remote Path:	/tmp/	
Web Services URL:	http://192.168.178.211:10001	
Autosave	Log Messages Web Services	
Desktop	Watch Log Errors	/ices

Hier können nun die Zugriffsdaten eingegeben werden, welche einen Zugriff von mcfg auf die MCU-3000 erlauben. Eine Beschreibung dieser Vorgehensweise ist im Handbuch Phb-Linux.pdf zu finden.

1.5 Steuerung booten

An diesem Punkt wurden nun die wichtigsten Setups vorgenommen, die Steuerung sollte jetzt gebootet werden können. Der Bootvorgang kann über den Boot-Dialog im [Tools][System Boot ...] ausgelöst werden.

Abbildung 1-3: Steuerung booten

Sofern die Steuerung erfolgreich gebootet werden konnte, ist dies in der Kopfzeile der MCFG-Anwendung ersichtlich. Dort sollte neben dem Projektdateinamen der Eintrag [Online Mode] angezeigt werden. Sofern beim Booten der Steuerung Konfigurationsfehler angezeigt werden, sollte nachfolgender Abschnitt beachtet werden.

1.6 Konfigurationsfehler

Abbildung 1-4: Bildschirmmeldung bei Konfigurationsfehlern

Beim Booten der Steuerung oder beim Start von *mcfg.exe* wird eine Warnung "Configuration errors detected" ausgegeben, sofern bei mindestens einem Achskanal das {*cef*}-Fehler-Flag im Achsenstatusregister {*axst*} gesetzt ist. Dieser Konfigurationsfehler resultiert aus einer Dateninkonsistenz zwischen System-Datei (*system.dat*) und auf der MCU-G3 Baugruppe remanent gespeicherten Daten.

Der Konfigurationsfehler kann durch Speichern der Systemdaten im Menü [File][System Data] mit dem Befehl [File][Save] oder durch Betätigen des blauen Diskettensymbols in der Mauspalette beseitigt werden. Während des Speicherns muss das Fenster "System Data" geöffnet und aktiv sein. Bevor die Speicheroperation stattfindet, <u>muss</u> das System auf jeden Fall eine Warnung "System will be reset" anzeigen, ansonsten stimmt die aktuelle Systemdatei nicht mit der im Projekt angewählten überein [File][Project Parameter], oder die Steuerung ist noch im Offline-Modus.

1.7 Bedienung von *mcfg.exe*

Die Bedienung von *mcfg.exe* ist vorzugsweise mit Mausunterstützung vorzunehmen. Die Bildschirmgestaltung wurde nach MDI-Richtlinien mit Haupt- und Unterformularen vorgenommen, dies bedeutet dass alle Fenster, außer Dialog-Fenstern, beliebig im Bildschirmbereich des MCFG-Hauptformulars platziert werden können. Die zuletzt gespeicherte Bildschirmsession kann beim Programmstart auf Wunsch wieder aktiviert werden (siehe Kapitel 1.4).

1.7.1 Hilfsbildschirme

Verschiedene Menüs werden mit Hilfsbildschirmen näher erläutert. Zum Teil ist der Hilfstext sogar feldbezogen. Wenn Hilfstext zum gewünschten Menü bzw. Feld existiert, erscheint dieser nach Betätigen der Funktionstaste [F1].

Weitere Hilfen zur MCFG-Anwendung sind über das Menü [Help][Help Topics] verfügbar.

1.7.2 Editieren von System Daten [File] [System Data]

In diesem Fenster werden achsspezifische Motor- und Systemparameter editiert. Bei diesen Parametern handelt es sich um systemspezifische Defaultwerte für die einzelnen Achskanäle. Die meisten Parameter können auch während der Laufzeit mit Hilfe von speziellen Lese- und Schreib-Befehlen abgefragt und gesetzt werden. Die Informationen, die hier erfasst werden, werden in der Datei SYSTEM.DAT abgelegt. Bei allen Eingaben ist die Anwahl der richtigen Achsnummer zu beachten. Die einzelnen Daten werden gruppiert unter mehreren Registerkarten editiert.

Anmerkung: Die Systemdaten müssen nach einem Steuerungs-Boot-Vorgang (z.B. in mcfg.exe) mindestens einmal auf die MCU-3000 übertragen werden, damit das Betriebsprogramm (*rwmos.elf*) auf der MCU-3000 ablauffähig ist. Das Laden erfolgt entweder aus dem PCAP-Benutzerprogramm oder aus dem Hilfsprogramm *mcfg.exe*. In *mcfg.exe* und in den diversen Beispielprogrammen erfolgt das Übertragen der Systemdatei *system.dat* nur einmalig!

1.7.2.1 System Daten, Registerseite Axis specific parameters

Abbildung 1-5: System Daten, Registerseite achsspezifische Parameter

MCFG - MCFG-DEMO.INI [Online Mode]	_O×
MI [FMT: SYSFILE MCU-3000 V2.50] C:\LA\System.dat	
Axis Selection By Number: 1 V By Name: A1 V	
Axis specific parameters Motion parameters Motor specific parameters Dig. Inputs Dig. Outputs	
Laeneral Parameters	
Motor-Tupe (mt): Servo	
Position Register display unit: counts 💌 Display precision: 3 💌	
Mechanic Parameters	
Axis-Type (at): Itanslatoric 🗖 No Range Limitation	
Encoder-Slits or Step-Pulses (slsp): 1,0000000E+03	
Gear Factor (gf): 1,00000000E+00 mm ▼ per rev	
3: 0 00000000E+00 4: 0.0000000E+00 mm	
Supervisory Parameters Maximum position error (mps) 0.0000000E+00	
Software limit left side (stl): 0.0000000E+00	
Software limit right side (slr): 0,0000000E+00 mm NOFUNC V	
In position window (ipw): 0,0000000E+00 mm	
Δvic specific system parameters for avis: 1 - Δ1	

1.7.2.1.1 Symbolischer Achsname

Jedem Achskanal kann ein symbolischer Achsname *Axis name* {sn} mit bis zu 10 Zeichen zugeordnet werden. Dieser Achsname wird unter anderem auch in der Programmiersprache *rw_SymPas* automatisch deklariert. Falls die Achsen unter rw_SymPas angesprochen werden, dürfen keine Bezeichner von Systemvariablen verwendet werden. Bei Verwendung von G-Code Programmen dürfen die Achsnamen nicht mit numerischen Zeichen enden.

1.7.2.1.2 Motor-Typ

Mit dem Parameter *Motor-Type* {mt} kann zwischen Schritt- und Servo-Antrieben ausgewählt werden (Stepper oder Servo). Die Einstellung Stepper ist auch zu wählen, wenn Servomotoren mit Puls-Richtungs-Sollwertschnittstelle verwendet werden sollen. Die motortypspezifischen Parameter werden auf der Registerseite [Motor specific parameters] spezifiziert. Die Hardware Jumper für die Sollwertkanal Ausgangssignale (siehe Handbuch IHB) müssen entsprechend dieser Einstellung konfiguriert werden.

1.7.2.1.3 Achsen-Typ

Der Parameter Axis-Type {at} kann nicht angewählt werden. Er ergibt sich automatisch durch die Anwahl der Zählereinheit des Getriebefaktors {gf}. Sofern es sich bei dieser Einheit um eine Wegeinheit (mm, m, inch ..) handelt, wird der Achsentyp als translatorisch festgelegt. Bei der Anwahl von Winkeleinheiten (rad, deg ..) wird der Achsentyp als rotatorisch festgelegt. Bei rotatorischen Achsen kann mit dem Merker "No Range Limitation" die sonst übliche Begrenzung des Verfahrbereichs auf eine Umdrehung deaktiviert werden.

Anmerkung: Sofern das interpolierte Verfahren mehrerer Achsen gefordert ist, sollten die beteiligten Achsen vom gleichen Typ sein. Eine Ausnahme kann hier gemacht werden, wenn die Methoden der Mantelflächenbearbeitung Verwendung finden (siehe PHB).

1.7.2.1.4 Einheit zur Anzeige der Positionsregister

Im Feld *Position register display unit* kann eine für *mcfg.exe* intern benutzte Anzeigeeinheit gewählt werden. Sofern in den verschiedenen Statusfenstern Positions-Sollwerte oder Positions-Istwerte angezeigt werden [Kapitel 1.7.6.1 und 1.7.6.3], erfolgt die Darstellung unter Berücksichtigung dieser Einheit.

1.7.2.1.5 Anzeigegenauigkeit der Positionsregister

Im Feld *Display precision* kann die Genauigkeit der oben beschriebenen Positionsregister festgelegt werden. Der eingegebene Wert legt die Anzahl von Stellen nach dem Komma fest.

1.7.2.1.6 Enkoder-Striche oder Anzahl Schritte bei Schrittmotorachsen

Die Angabe der Enkoder-Strichzahl {slsp} erfolgt unter Angabe einer der Maßeinheit *Slits.* Es können sowohl rotatorische (Winkelkodierer bzw. Drehgeber) als auch translatorische Impulsmeßsysteme (Linearmaßstäbe) parametrisiert werden. Dieser Wert wird intern vervierfacht, da die MCU-G3-Auswerteelektronik ebenfalls eine Vervierfachung vornimmt. Bei Schrittmotorsystemen sollte die Maßeinheit *Pulses* angewählt werden. Der Faktor Schrittimpulse *{slsp}* wird nicht vervierfacht. Der Istwert entspricht hierbei der Anzahl ausgegebener Schrittimpulse. Weiterhin muß die Bezugsgröße des Messsystems gewählt werden. Bei Schrittmotoren und Drehgebern ist dies i.A. eine Umdrehung (rev). Bei Linearmassstäben ist dies eine translatorische Einheit z.B. mm.

1.7.2.1.7 <u>Getriebefaktor</u>

Der Parameter *Gear Factor* {gf} spezifiziert ein Übersetzungs- bzw. Untersetzungsverhältnis zwischen Istwert-Impulserfassung und Vorschubweg oder Verdrehwinkel. Der Getriebefaktor wird durch eine Nennerund Zählereinheit vervollständigt.

Die Nennereinheit ist automatisch die Bezugsgröße des Messsystems. Mit der gewählten Zählereinheit werden zwei Systemgrößen festgelegt. Zum einen ist dies der Achsentyp, welcher bei Wegeinheiten translatorisch (Linear-Achsen) und bei Winkeleinheiten rotatorisch (Rund-, Drehachsen) definiert wird. Zum anderen ist die gewählte Einheit gleichzeitig Basiseinheit für alle achsspezifischen Bewegungskommandos (*jog*-Befehle) und deren Profilparameter (Geschwindigkeiten und Beschleunigungen, nachfolgend beschrieben). Der Gear Factor darf niemals 0 sein.

1.7.2.1.8 Nullpunktverschiebungen

Jedem Achskanal können fünf unterschiedliche Nullpunktverschiebungen {*zero offsets*} zugeordnet werden. Mit Hilfe der SAP- und PCAP-Befehle azo() kann der gewünschte Verschiebungsparameter für die selektierten Achskanäle aktiviert werden. Nullpunktverschiebungen dienen zur Festlegung eines neuen Koordinatensystems, ohne dabei den tatsächlichen Maschinennullpunkt beeinflussen zu müssen.

1.7.2.1.9 Maximaler Schleppfehler

Mit dem Parameter *Maximum position error* {mpe} wird die maximal erlaubte Abweichung zwischen Soll- und Ist-Position der Motorachse spezifiziert. Sofern dieser Wert überschritten wird, hat dieser Fehler zwar keine Konsequenzen auf die Profil-Generierung und Lageregelung, wird aber im bitkodierten Achsenstatusregister *axst* angezeigt. Auf dieses Statusregister kann entweder ereignisgesteuert oder durch Abfrage reagiert werden.

Anmerkung: Die Schleppfehlerüberwachung findet nur dann statt, wenn der Lageregelkreis geschlossen ist und für {mpe} ein Wert größer Null angegeben wird.

1.7.2.1.10 Software-Endlagen

Für jede Motor-Achse kann eine linke (Software limit left side {sll}) und rechte (Software limit right side {slr}) Software-Endlage spezifiziert werden. Sofern diese Grenze überschritten wird, kann mit Hilfe eines Parameters angegeben werden, wie dieser Fehlerzustand durch die Steuerung behandelt werden soll. Dabei gibt es folgende Möglichkeiten:

Tabelle 1-1: Wirkungsweise von Softwareendlagen

Funktionstyp	Beschreibung
NOFUNC	(No Function) Die Software-Endlage wird ignoriert.
ТОМ	(Turn Off Motor) Auf dem Sollwertkanal wird bei Servo-Antrieben kein Wert ausgegeben, der die Achse tiefer in den Endschalterbereich verfahren würde. Bei Drehzahlreglern bedeutet dies Drehzahlsollwert 0 mit entsprechendem Haltemoment. Bei Stromverstärkern bedeutet dies jedoch Stromsollwert 0 und somit kein Haltemoment. Wenn der Positionssollwert die aktuelle Position unterschreitet wird die Achse ungeregelt mitgeführt. Wenn der Positionssollwert die Endlagenposition unterschreitet wird der Endschalterzustand wieder aufgehoben.
SMA	(Stop Motor Abruptly) Die Achse wird an der angegebenen Endlagenposition in Lageregelung abrupt festgehalten. Ein weiteres Verfahren über die Software-Endlage hinaus wird verhindert. Wenn der Positionssollwert die Endlagenposition unterschreitet wird der Endschalterzustand wieder aufgehoben.
SMD	(Stop Motor Deceleration) Beim Ansprechen dieser Software-Endlage wird die Achse automatisch mit der achsspezifischen Verzögerung { <i>sdec</i> } auf Geschwindigkeit 0 abgebremst und dann in Lageregelung gehalten. Ein weiteres Verfahren über die Endlage hinaus wird verhindert. Wenn der Positionssollwert die Endlagenposition unterschreitet, wird der Endschalterzustand wieder aufgehoben. Dieser Funktionstyp wird insbesondere bei unterlagerten Drehzahlregelkreisen und Schrittmotorantrieben bevorzugt.

Hinweis: Die Überwachung der Softwareendlagen ist nur bei referenzierten Achsen aktiviert.

1.7.2.1.11 In-Positions-Fenster

Mit dem Parameter *In position window* {ipw} kann spezifiziert werden, wenn das *ip*-Flag im bitkodierten *asst*-Register gesetzt wird. Das Setzen dieses Flags erfolgt nach Erreichen des Profilendes (*pe*-Flag im *asst*) und bei Unterschreitung der in {ipw} spezifizierten Positionsdifferenz zwischen Soll- und Istposition der Motorachse. Alle mit IP-Funktion projektierten MCU-G3-Digitalausgänge werden wie das *ip*-Flag gesetzt bzw. rückgesetzt.

Anmerkung: Die In-Positions-Fenster-Überwachung findet nur dann statt, wenn für {ipw} ein Wert größer Null angegeben wird.

1.7.2.2 System Daten, Registerseite Motion parameters

Abbildung 1-6: System Daten, Registerseite Motion Parameters

20/MCFG - MCFG-DEMO.INI [Online Mode]	_ 🗆 ×
m [FMT: SYSFILE MCU-3000 V2.50] C:\LA\System.dat	
Axis Selection By Number: 1 V By Name: A1	
Axis specific parameters Motion parameters Motor specific parameters Dig. Inputs Dig. Outputs	
Jog Parameters Maximum jog acceleration (jac): 2.50000000E+02 mm per sec2 Imm	
Maximum jog velocity {iv}; 5,00000000E+01 mm per sec Jog target velocity (iv/): 0,0000000E+00 mm per sec	
Maximum nome acceleration (nac): [2:0000000+02 mm per sec	
Supervisory Parameters	
Stop deceleration (sdec): 2,5000000E+02 mm per sec ²	
Axis specific system parameters for axis: 1 - A1	

1.7.2.2.1 Jog (Eilgang) - Parameters

Werte gültig.

Die Jog (Eilgang) -Parameter spezifizieren die achsspezifischen Grenzdaten für den Eilgang-Positionierbetrieb. Dies sind Beschleunigung *Maximum jog acceleration* {jac}, Geschwindigkeit *Maximum jog velocity* {jvl} und Zielgeschwindigkeit *Jog target velocity* {jtvl}. Üblicherweise wird die Zielgeschwindigkeit hier auf 0 gesetzt und ggf. aus der Anwendungsprogrammierung vorgegeben. <u>Hinweis:</u> Diese Werte sind die Anfangswerte, die nach dem Übertragen der Systemdatei an die Steuerung aktiv sind. Sobald diese Werte von der Applikation überschrieben wurden, sind die jeweils programmierten

1.7.2.2.2 Homing (Referenzfahrt) - Parameters

Die Home (Referenzfahrt) -Parameter {hac} und {hvl} spezifizieren wie die Eilgang-Parameter die Grenzdaten für den Referenzpunktsuchlauf. Sie werden automatisch bei allen *home*-Befehlen als Parameter zur Profilgenerierung herangezogen. Üblicherweise ist die Home-Geschwindigkeit *Maximum home velocity* nur ein Bruchteil der Jog-Geschwindigkeit, insbesondere dann, wenn der Referenzschalter in der Nähe eines Endschalters angeordnet ist.

<u>Hinweis:</u> Diese Werte sind die Anfangswerte, die nach dem Übertragen der Systemdatei an die Steuerung aktiv sind. Sobald diese Werte von der Applikation überschrieben wurden, sind die jeweils programmierten Werte gültig.

1.7.2.2.3 Supervisory (Überwachung) - Parameters

Der Stop deceleration -Parameter {sdec} und spezifizieren mit welcher Verzögerung der Motor beim Ansprechen einer mit SMD-Funktion projektierten Hard- oder Softwareendlage, bzw. beim Aufruf des Jog-Stop-Kommandos (js) abgebremst werden soll.

<u>Hinweis:</u> Dieser Werte sind ein Anfangswert, der nach dem Übertragen der Systemdatei an die Steuerung aktiv ist. Sobald dieser Wert von der Applikation überschrieben wurde, ist der jeweils programmierte Wert gültig.

1.7.2.3 System Daten, Registerseite Motor specific parameters bei Servo Achsen

Abbildung 1-7: System Daten, Registerseite Motor specific parameters (hier Servo-Motor-Achse)

MCFG - MCFG-DEMO.INI [Online Mode]	<u> </u>
File Edit Window View Tools Help	
📶 [FMT: SYSFILE MCU-3000 V2.50] C:\LA\System.dat	
Axis Selection	
By Number: 1 Sy Name: A1	
Axis specific parameters Motion parameters Motor specific parameters Dig. Inputs Dig. Outputs	
Motor and drive specific parameters: SERVO-Axis	
Filter Parameter (kp): 1.00000000E+00	
Filter Parameter (ki): 0.0000000E+00	
Filter Parameter (kd): 0.0000000E+00	
Filter Parameter {kpl}: 0.0000000E+00	
Forward compensation accel. factor (kfca): 0.0000000E+00	
Forward compensation vel. factor {kfcv}: 0.0000000E+00	
Maximum output voltage [V] {mcpmax}: 1.00000000E+01	
Minimum output voltage [V] {mcpmin}: -1,00000000E+01	
Compensation positive voltage [V] {mcpcp}: 0.0000000E+00	
Compensation negative voltage [V] {mcpcn}: 0.0000000E+00	
Invert motor command output: No	
Change encoder count direction: No	
Polarity of index pulse: +	
Avia analific sustan perematara far avia 1 - A1	
Axis specific system parameters (OF dxis) 1 - A1	
	li.

1.7.2.3.1 Filterparameter

Bei diesen Parametern wird je nach Schritt- und Servo-Antrieben unterschieden. Für Servo-Achsen kann ein PIDF-Filterparametersatz mit den Koeffizienten {kp} für Proportionalverstärkung, {ki} für Integrierbeiwert, {kd} für Differenzierbeiwert und {kpl} für eine zusätzliche Phasenvoreilung eingestellt werden. Mit den Faktoren {kfca} und {kfcv} können Kompensationsparameter für Stromverstärker bzw. Drehzahlregler spezifiziert werden. Diese ermöglichen, auch bei hohen Beschleunigungswerten, eine nahezu schleppfehlerfreie Achspositionierung. Die Einstellung des Filters erfolgt nach den im [IHB / Kapitel 6.2]. gemachten Angaben. Bei Schrittmotorsystemen werden interne Koeffizienten herangezogen und brauchen deshalb nicht durch den Anwender vorgegeben werden.

1.7.2.3.2 Stellgrößenbegrenzung

Bei Servo-Achsen kann mit Hilfe der Variablen {maxmcp} und {minmcp} der Stellgrößenausgang auf einen gewünschten Maximal- bzw. Minimal-Wert begrenzt werden. Üblicherweise ist der Maximalwert 10V und der Minimalwert -10V. Sofern die Maximalwerte verkleinert werden, bedeutet dies eine Einschränkung der

Stellgröße für den Leistungsverstärker. Dies bedeutet bei Drehzahlreglern eine Verkleinerung des Drehzahlstellbereiches und bei Stromverstärkern eine Reduktion des Drehmomentbereiches.

1.7.2.3.3 <u>Stellgrößenkompensation</u>

Bei Servo-Achsen mit Hydraulikmotoren kann mit den Variablen {mcpcp} und {mcpcn} eine Kompensationsspannung für den Stellgrößenausgang eingestellt werden. Im Regelbetrieb sind dies die Mindest-Ausgangsspannungen auf dem Analog-Sollwert-Kanal. Die systembedingte Einschalthysterese von Ventilen, mit welchen üblicherweise die Steuerung der Hydraulikmotoren erfolgt, kann somit unterdrückt werden.

Bei allen anderen Servomotortypen ist normalerweise keine Kompensationsspannung notwendig.

1.7.2.3.4 Stellgröße invertieren

Mit dem Parameter *Invert motor command port* kann bei Servo-Achsen das Vorzeichen der Stellgröße (Motor-Command-Port) invertiert werden. Dies ist insbesondere dann hilfreich, wenn im Regelsystem eine Phasendrehung vorhanden ist oder wenn die Achsrichtung geändert werden soll. Die Phasenlage zwischen Stellgröße und Lage-Istwert wird u.A. durch die Polarität der Motorleitungen und Enkodersignale oder mechanische Komponenten wie z.B. Getriebe bestimmt.

1.7.2.3.5 Zählrichtung ändern

Mit dem Parameter *Change encoder count direction* wird die Zählrichtung für die Impulserfassungskanäle invertiert. Dies ist insbesondere dann hilfreich, wenn im Regelsystem eine Phasendrehung vorhanden ist oder wenn die Achsrichtung geändert werden soll.

1.7.2.3.6 Polarität des Indexsignals

Mit dem Parameter *Polarity of index pulse* wird die Polarität für das Nullspur-Signal (Indexpuls) eines Impulsgebers festgelegt.

Anmerkung: Der aktuelle Zustand des Nullspur-Signals wird unter anderem im Menü [File][Dialog Functions][Show Digital Inputs / Status] im Feld NDX angezeigt.

1.7.2.4 System Daten, Registerseite Motor specific parameters bei Schrittmotor Achsen

Abbildung 1-8: System Daten, Registerseite Motor specific parameters (hier Stepper-Motor-Achse)

MCFG - MCFG-DEMO.INI [Online Mode]	
Eile Edit Window Yiew Iools Help	
[7] [FMT: SYSFILE MCU-3000 V2.50] C:\LA\System.dat	.ox
Axis Selection By Number: 1 V By Name: A1	
Axis specific parameters Motion parameters Motor specific parameters Dig. Inputs Dig. Outputs	
Motor and drive specific parameters: STEPPER-Axis	
Start/Stop velocity (ssvl): 0.0000000E+00 mm per sec	
Maximum pos. output freq. [200 kHz] (mcpmax): 1,0000000E+01	
Maximum neg. output freq. [200 kHz] {mcpmin}: -1,00000000E+01	
Invert motor command output: No	
Change count direction: No	
Polarity of index pulse: +	
Use encoder for position feed back: No	
Axis specific system parameters for axis: 1 - A1	

1.7.2.4.1 Start-Stop-Frequenz

Dieser Parameter ist für zukünftige Erweiterungen reserviert.

1.7.2.4.2 Stellgrößenbegrenzung

Bei Schrittmotor-Achsen kann mit Hilfe der Variablen {maxmcp} und {minmcp} der Stellgrößenausgang auf eine gewünschte Maximal- bzw. Minimal-Frequenz in der Einheit 200kHz begrenzt werden. Üblicherweise ist der Maximalwert 10 und der Minimalwert -10. Somit sind die Maximalfrequenzen mit 2 MHz spezifiziert. Auf diese Weise kann die Eingangsfrequenz am Leistungsverstärker jeweils auf gültige Werte begrenzt werden.

1.7.2.4.3 <u>Stellgröße invertieren</u>

Mit dem Parameter *Invert motor command port* kann bei Schrittmotor-Achsen das Vorzeichensignal (Sign) der Stellgröße invertiert werden. Da bei Schrittmotoren keine Phasendrehung im Regelsystem möglich ist, mach dieser Parameter hier nur Sinn, wenn die Achsrichtung geändert werden soll. Hierzu muß gleichzeitig die Zählrichtung geändert werden.

1.7.2.4.4 Zählrichtung ändern

Mit dem Parameter *Change count direction* wird die Zählrichtung für die Impulsausgabekanäle invertiert. Da bei Schrittmotoren keine Phasendrehung im Regelsystem möglich ist, mach dieser Parameter hier nur Sinn, wenn die Achsrichtung geändert werden soll. Hierzu muß gleichzeitig die Stellgröße invertiert werden.

1.7.2.4.5 Polarität des Indexsignals

Der Parameter Polarity of index pulse wird hier nicht unterstützt.

1.7.2.4.6 Verwendung der Enkoderrückmeldung

Die Option "Use Encoder for position feedback" ist nur von Bedeutung bei Schrittmotorsystemen bzw. Puls-Richtungsausgabe und wenn in RWMOS die Option "optionEV" enthalten ist.

Wenn die Option "Use Encoder for position feedback" aktiviert ist, wird bei einem Softwarelatch (Eingang LP oder Kommando Ips) von Schrittmotorsystemen das Enkodersignal (aux-Kanal) anstatt der Istposition gelatcht.

Weiterhin wird in diesem Fall bei der grafischen Systemanalyse bei Schrittmotoren die Enkoder-Position anstatt der Real-Position rp in der Grafik angezeigt. Dies kann insbesondere bei Servosystemen mit Puls-Richtungs-Schnittstelle hilfreich sein.

Bei der Getriebenachführung (GEAR) wird bei Istwertnachführung ebenfalls der aux Kanal zur Positionsberechung herangezogen anstatt der Istposition rp. Falls sich die Auflösung des Schrittmotorsystems und den Enkoderkanals unterscheiden muss beim Systemstart die achsspezifische Variable gfaux gesetzt werden. Hierbei handelt es sich nicht um einen absoluten Getriebefaktor sondern um um das Verhältnis zwischen Enkoderkanal-Auflösung und Schrittmotor-Auflösung. Für alle Achsen ist 1.0 ist der Defaultwert von gfaux.

Das Kommando rdrv bzw. Achsenqualifizierer rv liefern bei der Option "Use Encoder for position feedback" die Istgeschwindigkeit des aux-Kanals anstatt des Istwertkanals (rp).

<u>**Hinweis:**</u> Um die Umrechnung zwischen aux und rp für die grafische Systemanalyse zu skalieren, kann der Achsenqualifizierer GFAUX verwendet werden (Defaultwert: 1.0).

1.7.2.5 System Daten, Registerseite Digital Inputs

In diesem Menü erfolgt die achsspezifische Projektierung der Hardware-Eigenschaften für die digitalen Eingänge der MCU-G3.

Abbildung 1-9: System Daten, Registerseite Digital Inputs

[7] [FMT: SYSFILE MCU-3000 V2.50] C:\Li Avia Calendian	\System.dat		×
By Number: 1 Sy Name:	1		
Axis specific parameters Motion parameters	Motor specific parameters Dig. Inputs Di	ig. Outputs	
Name Invert Special Functi I1 NOFUNC	Name Invert Special	I Function	
	110 🗖 NOFU		
13 🗖 NOFUNC	III 🗖 NOFU	INC 🔽	
14 NOFUNC	112 🗖 NOFU		
15 NOFUNC	113 NOFU		
NDX NDX NDX	INPUT		
Axis specific system parameters for axis: 1 - A			11.

Allen Digitaleingängen kann im Feld *Special Function* eine Spezialfunktion zugewiesen werden. Die Spezialfunktion wird immer dann wirksam, wenn der entsprechende projektierte Digital-Eingang aktiviert wird. Die Bedeutung und Wirkungsweise aller möglichen Spezialfunktionen wird nachfolgend erläutert:

Tabelle 1	-2: Wirku	ngsweise vo	on Digital-E	ingängen
		0		

Funktionstyp	Beschreibung
NOFUNC	(No Function) Der Eingang hat keine Sonderfunktion. Er dient lediglich als frei programmierbarer Digital-Eingang.
REF	(Reference Switch) Eingänge welche mit dieser Funktion projektiert wurden, fungieren als Referenz- oder Stopschalter. Sofern während der Ausführung spezieller Referenzfahrtbefehle (z.B. <i>jhl()</i> -Befehl) ein auf diese Funktion projektierter Digitaleingang z.B. durch einen Referenzschalter (Nocken) aktiviert wird, erfolgt ein Abbremsen des selektierten Achskanals mit der achsspezifischen Referenzfahrtbeschleunigung auf Geschwindigkeit 0.
LSL_TOM	(Limit Switch Left Turn Off Motor) Eingänge welche mit dieser Funktion projektiert wurden, fungieren als linke Hardware-Endschalter. Beim Ansprechen dieses Eingangs wird auf dem Sollwertkanal bei Servo-Antrieben kein Wert ausgegeben, der die Achse tiefer in den Endschalterbereich verfahren würde. Bei Drehzahlreglern bedeutet dies Drehzahlsollwert 0 mit entsprechendem Haltemoment. Bei Stromverstärkern bedeutet dies jedoch Stromsollwert 0 und somit kein Haltemoment. Das Ansprechen des Endschalters erfolgt üblicherweise beim Verfahren in negative Richtung und Überschreiten der entsprechenden Endlage. Wenn der Positionssollwert die aktuelle Position unterschreitet wird die Achse ungeregelt mitgeführt. Wenn der Positionssollwert die Position unterschreitet, bei welcher der Endschalter erkannt wurde, wird der Endschalterzustand wieder aufgehoben.
LSL_SMA	(Limit Switch Left Stop Motor Abruptly). Dieser Eingang funktioniert ebenfalls als linker Hardware-Endschalter, bewirkt aber beim Aktivieren das Festhalten der Achse an der momentanen Position in der Betriebsart Lageregelung. Ein weiteres Verfahren über die Endlage hinaus wird verhindert. Wenn der Positionssollwert die Endlagenposition unterschreitet wird der Endschalterzustand wieder aufgehoben.
LSL_SMD	(Limit Switch Left Stop Motor (with) Deceleration) Die mit dieser Funktion projektierten Eingänge funktionieren als linke Hardware-Endschalter. Beim Ansprechen dieses Eingangs wird die Achse automatisch mit der achsspezifischen Verzögerung { <i>sdec</i> } auf Geschwindigkeit 0 abgebremst und dann in Lageregelung gehalten. Ein weiteres Verfahren über die Endlage hinaus wird verhindert. Das Ansprechen des Endschalters erfolgt üblicherweise beim Verfahren in negative Richtung und Überschreiten der entsprechenden Endlage. Wenn der Positionssollwert die Position unterschreitet, wird der Endschalterzustand wieder aufgehoben. Dieser Funktionstyp wird insbesondere bei unterlagerten Drehzahlregelkreisen und Schrittmotorantrieben bevorzugt. Anmerkung: Die Verzögerung <i>sdec</i> muss so bestimmt werden, daß ein sicheres Anhalten des Antriebes gewährleistet ist, ohne dass die Motorachse in eine mechanische Begrenzung läuft und dadurch evt. Schäden verursacht. Zur Absicherung des Antriebes sollten zusätzlich Hardware-Begrenzungsschalter eingesetzt werden, welche die Leistungsverstärker nur in die erlaubte Verfahrrichtung freischalten.
LSR_TOM	(Limit Switch Right Turn Off Motor) Die Funktionsweise ist mit LSL_TOM identisch bis auf den Unterschied, dass dieser Endschalter für Endlage rechts projektiert wird.
LSR_SMA	(Limit Switch Right Stop Motor Abruptly). Die Funktionsweise ist mit LSL_SMA identisch, bis auf den Unterschied, dass dieser Endschalter für Endlage rechts projektiert wird.
LSR_SMD	(Limit Switch Right Stop Motor (with) Deceleration) Die Funktionsweise ist mit LSL_SMD identisch, bis auf den Unterschied, dass dieser Endschalter für Endlage rechts projektiert wird.
EO	(Emergency Out) Dieser Eingang signalisiert, dass ein im Antriebssystem vorhandener Not-Aus-Taster betätigt wurde. Anmerkung : Dieser Eingang hat keine Wirkung auf das Antriebssystem. Es bleibt dem Benutzer überlassen, wie auf dieses Ereignis reagiert werden muß. Die Auswertung dieses Signals kann durch Abfrage [PHB / Kapitel 4.4.53- rdaxst()] oder mit Hilfe eines EVENT-Handlers [PHB / Kapitel 6.4.2] erfolgen.

Funktionstyp	Beschreibung
DR	(Drive Ready) Dieser Eingang signalisiert, ob der an diesem Achskanal angeschlossene Leistungsverstärker Betriebsbereitschaft anzeigt. Die Auswertung dieses Signals kann durch Abfrage [PHB / Kapitel 4.4.53- rdaxst()] oder mit Hilfe eines EVENT-Handlers [PHB / Kapitel 6.4.3] erfolgen.
UI	(User Input) Dieser Eingang hat keine Wirkung auf das Antriebssystem. Da für diesen Eingangstyp auch ein EVENT-Handler zur Verfügung steht, kann die alternative zyklische Abfrage (Polling) von Eingängen entfallen. Die Auswertung dieses Signals kann durch Abfrage [PHB / Kapitel 4.4.53- rdaxst()] oder mit Hilfe eines EVENT-Handlers [PHB / Kapitel 6.4.7] erfolgen.
LP	(Latch Position) Beim Aktivieren dieses Eingangs wird die Ist-Position {rp} der entsprechenden Motor-Achse zwischengespeichert. Sofern ein Latch-Vorgang ausgelöst wurde, ist das <i>Ipsf</i> -Flag des <i>axst</i> -Registers gesetzt. Dann kann mit dem PCAP-Befehl <i>rdlp()</i> [PHB / Kapitel 4.4.90] oder über den SAP-Achsenqualifizierer <i>Ip</i> die zwischengespeicherte Position eingelesen werden. Das <i>Ipsf</i> -Flag wird durch den Einlesevorgang automatisch gelöscht. Die maximale Verzögerung des Latch-Vorganges beträgt 2 Abtastintervalle (2.56ms).

Fortsetzung Tabelle 1-3: Wirkungsweise von Digital-Eingängen

1.7.2.5.1 Invertieren der MCU-G3 Digitaleingänge

Alle MCU-G3 Digitaleingänge können softwaremäßig und achsspezifisch invertiert werden. Die gewünschte Auswahl wird im Feld *Invert Input* mit der Leertaste oder durch Maus-Klicks vorgenommen. Somit können ohne zusätzlichen Hardwareaufwand Öffner oder Schließer an den jeweiligen Eingängen betrieben werden. Die Information, ob ein Eingang invertiert werden soll oder nicht, wird auch im nicht flüchtigen Arbeitsspeicher der MCU-G3-Steuerung gespeichert. Ebenso ist es möglich, die aktive Flanke des Nullspursignals und der Hardware Latch Strobe Eingangs für Hardware-Latchvorgänge zu invertieren.

Anmerkung: Werksseitig sind alle Eingänge der MCU-3000 / APCI-8001-Systemelektronik ohne Invertierung projektiert. Die Eingänge werden beim Anlegen von +24V aktiv.

Bei den Steuerungstypen MCU-6000 / APCI-8401 hingegen sind die Eingänge werksseitig mit Invertierung projektiert. Die Eingänge werden jedoch ebenfalls beim Anlegen von +24V aktiv.

1.7.2.6 System Daten, Registerseite Digital Outputs

In diesem Menü erfolgt die achsspezifische Projektierung der Hardware-Eigenschaften für die digitalen Ausgänge der MCU-G3.

Abbildung 1-10: System Daten, Registerseite Digital Outputs

Ele Edt Window View Iools Help	
Image: System Constraints Image: System Constres Image: System Constraints <	
Axis Selection By Number: 1 Axis Selection	
Axis specific parameters Motion parameters Motor specific parameters Dig. Inputs Dig. Outputs Name Set Special Function 01 I NOFUNC 02 NOFUNC NOFUNC 03 NOFUNC NOFUNC	
04 NOFUNC Y 05 NOFUNC Y 06 NOFUNC Y 07 NOFUNC Y 08 NOFUNC Y	
Axis specific system parameters for axis: 1 - A1	

Allen Digitalausgängen kann im Feld *Special Function* eine Spezialfunktion zugewiesen werden. Die Bedeutung und Wirkungsweise dieser Spezialfunktionen wird nachfolgend erläutert:

Tabelle 1-4: Wirkungsweise von Digital-Ausgängen

Funktionstyp	Beschreibung
NOFUNC	(No Function) Der Ausgang hat keine Sonderfunktion. Er dient lediglich als programmierbarer Digital-Ausgang.
PAE	(Power Amplifier Enable) Dieser Ausgang wird immer dann gesetzt, wenn der entsprechende Achskanal in Lageregelung geschaltet wird. Er dient zur Freischaltung der externen Leistungsverstärkerbaugruppe. Die Freischaltung wird durch den <i>cl()</i> -Befehl bewirkt. Der Ausgang wird zurückgesetzt, sobald die Lageregelung abgeschaltet wird. Dies ist beispielsweise bei den Befehlen <i>ra(), rs()</i> oder <i>ol()</i> der Fall. Die Freischaltung der Leistungsverstärker wird z.B. in folgenden Situationen benötigt: Bei Störsituationen oder wegen der bei Drehzahlregelgeräten systembedingten Offsetdrift. Anmerkung: Alle Ausgänge werden bei einem Hardware-Rücksetzvorgang, welcher bei Power-On, Power-Fail oder Reset ausgelöst wird, sofort hardwaremäßig rückgesetzt. Die marktgängigen Leistungsverstärker werden mit einem potentailfreien Relaiskontakt freigeschaltet. Dieses könnte durch einen PAE-projektierten Ausgang angesteuert werden. Pro Achskanal wird ein potentialfreier Relaiskontakt (Schließer) am 10-poligen FB- Steckverbinder X5 zur Verfügung gestellt. Dieser Relaiskontakt ist werksseitig mit PAE- Funktion projektiert.
IP	(In position) Dieser Ausgang wird immer dann gesetzt, wenn der entsprechende Achskanal das Profilende erreicht hat und zusätzlich die Istposition und die Sollposition innerhalb des in {ipw} [Kapitel 1.7.2.1.11] spezifizierten Positionsfensters liegt.
MPE	(Maximum position error) Dieser Ausgang wird dann gesetzt, wenn der in {mpe}-spezifizierte erlaubte Schleppfehler überschritten wird [Kapitel 1.7.2.1.9].
SIGN SPEC	Bei Schrittmotorachsen mit Enkoderauswertung wird mit dieser Funktion das Sign-Signal an einen digitalen Ausgang zugewiesen. Weiterhin kann diese Option für applikationsspezifische Sonderfunktionen verwendet werden. Diese werden im Bedarfsfall gesondert dokumentiert.

1.7.2.6.1 <u>Grundzustand der MCU-G3-Digitalausgänge</u>

Allen Digitalausgängen kann im Feld *Set* ein Default-Wert zugewiesen werden. Dieser Wert wird nach der Systeminitialisierung, speziell nach dem Boot-Vorgang, bzw. Hardware-Rücksetzen ausgegeben. Während des Rücksetzens wird an allen Digitalausgängen 0V ausgegeben.

Der Grundzustand der Digitalausgänge kann achsspezifisch gesetzt werden. Jedoch ist der Wert "1" oder "gesetzt" dominant, d.h. wenn auf einer beliebigen Achse "Set" aktiviert ist, ist die Bedeutung der anderen Achsprojektierungen nicht mehr von Bedeutung.

1.7.2.7 Systemdaten speichern [Save Changes]

Unter dem Menü-Punkt [File][Save] werden alle Hard- und Software-Parameter in der Systemdatei *system.dat* abgelegt. Die gleiche Aktion wird ausgelöst durch Aktivieren des blauen Diskettensymbols in der Mauspalette.

Die Speicheroperation veranlasst weiterhin, dass verschiedene Systeminformationen auf der MCU-G3-Baugruppe resident abgelegt werden, und das Rücksetzen des kompletten Antriebssystems. Zu den gespeicherten Systeminformationen gehören beispielsweise die Motortypen, die Invertierung der Eingänge u. a. Parameter.

Sollte beim Speichern ein Fehler auftreten, wird eine Bildschirmmaske mit der Fehlermeldung: "Configuration errors detected" [Kapitel 1.6] aufgelegt.

Dieser Speichervorgang muß auch nach einem Tausch einer Baugruppe in einer bestehenden Applikation mindestens einmal erfolgen, damit das System lauffähig ist.

Nach dem Speichervorgang sind die neu programmierten Systemdaten auf der MCU-G3 verfügbar.

Anmerkung: Die Systemdaten müssen nach einem Boot-Vorgang mindestens einmal auf die MCU-G3 übertragen werden, damit das Betriebsprogramm (*rwmos.elf*) auf der MCU-G3 ablauffähig ist. Dieser Ladevorgang erfolgt entweder aus dem PCAP-Anwenderprogramm oder aus dem Hilfsprogramm *mcfg.exe*. In *mcfg.exe* und in den diversen PCAP-Beispielprogrammen erfolgt das Übertragen der Systemdatei *system.dat* einmalig!

1.7.3 Motion Tools

1.7.3.1 Punkt zu Punkt-Bewegungen ausführen

Dieses Menü gestattet die schnelle Kontrolle des selektierten Antriebes. Hierzu ist insbesondere der Abschnitt "Grafische Systemanalyse" 1.7.4 zu beachten, mit dessen Hilfe Bewegungsvorgänge grafisch aufgezeichnet werden können. Der selektierte Achskanal kann absolut auf die gewünschte Zielposition (Winkel) oder relativ um den spezifizierten Verfahrweg (Winkel) verfahren werden. In diesem Zusammenhang sind die Angaben zum MCU-3000-Lageregler [PHB / Kapitel 2.1] und zur MCU-3000-Profilgenerierung [PHB / Kapitel 2.2] zu beachten.

Parameter für die Punkt zu Punkt-Bewegungen [MOVING PARAMETERS]

Name	Funktion
Axis #	Zeigt die Achsennummer des momentan selektierten Achskanals an, mit dem die Punkt zu Punkt-Bewegung ausgeführt wird.
Jog Mode	Auswahl des Verfahr-Modus. ABSOLUTE bedeutet, daß die in Position spezifizierte Weg-
	bzw. Winkelangabe auf den Maschinennullpunkt bezogen ist und Position direkt
	angefahren wird.
	RELATIVE bedeutet, dals ausgehend von der momentanen Position um die in Position
Acceleration	spezifizierte weg- bzw. winkelangabe relativ (auch inkremental) verfahren wird.
Acceleration	Beschleunigungswert für die auszufunrende Punkt zu Punkt-Bewegung unter
{Jac}	Maximalgeschwindigkeitswert für die auszuführende Punkt zu Punkt. Bewegung unter
{ivl}	Berücksichtigung der gewählten Finheiten
Target velocity	Zielgeschwindigkeit für die auszuführende Punkt zu Punkt-Bewegung unter
{itvl}	Berücksichtigung der gewählten Einheiten.
0,	Vorsicht: Bei einer Zielgeschwindigkeit <> 0 fährt das System endlos weiter
Position	Ziel-Position (Winkel) oder relativer Verfahr-Weg (Winkel). Der gewählte Verfahrweg wird in
{tp}	der achsspezifischen Einheit abgefahren.
Open Loop	Lageregelkreis öffnen. Bewirkt den Abbruch eines momentan ablaufenden Profils.
	Zusätzlich wird auf dem Sollwertkanal der Wert 0 ausgegeben. Alle mit PAE-Funktion
	projektierten Digitalausgange werden inaktiv gesetzt.
Close Loop	Lageregeikreis schlieisen. Die ist-Position wird als Soil-Position übernommen. Alle mit PAE-
log Start	Funktion projektienen Digitalausgange werden aktiv gesetzt. Mausbutton zum Starten das Bewegungsprofils unter Berücksichtigung der oben
Jug Start	spezifizerten Parameter Damit jedoch die Bewegung ausgeführt werden kann muß der
	Lageregelkreis geschlossen sein (Close Loop).
	Wenn der Merker "send Latch command to graphic screen" gesetzt ist und wenn für die
	gewählte Achse ein Grafikfenster geöffnet ist, wird durch Klick auf diesen Button
	gleichzeitig ein Aufzeichnungsvorgang für den Grafikbildschirm ausgelöst. Diese
	Vorgehensweise kann verwendet werden, um das Verhalten der Achsen bei der
	Einstellung von Filterparametern zu verifizieren.
Jog Stop	Mausbutton zum Anhalten des aktuellen Bewegungsprofils. Die Achse bremst mit der
lag Daak	programmierten StopDeceleration (sdec) (siehe Kapitel 1.7.2.2.3) zum Stillstand ab.
лод васк	iviausputton zum zurücktahren des letzten Bewegungsprofilis, welches mit Jog Start
	ausgerunnt wurde.

MCFG - MCFG-DEMOJIN File Edit Window View	[Online Mode] Tools <u>H</u> elp		_	
Motion Tools Axis Selection Name: A1		Open Loop	Close Loop	
send latch command	I to graphic screen	Clear Position		
Point to Point Jog Parar Jog Mode © Jog Relative © Jog Absolute	Ineters ■ Jog Start ■ Jog Back	Jog Stop		
Acceleration {jac}: Velocity (jvl): Target Velocity (jtvl): Position {to}:	2,50000000E+02 5,00000000E+01 0,00000000E+00 0,00000000E+00	mm / sec ² mm / sec mm / sec mm		

Abbildung 1-11: Motion Tools, Registerseite "Point to Point"

Diese Betriebsart eignet sich besonders gut zur Beurteilung des Regel- und Positionierverhaltens des angewählten Achskanals. Der Motor wird mit den angegeben Systemparametern absolut bzw. relativ mit Hilfe eines Trapez-Drehzahl-Profils verfahren. Gewöhnlich wird zunächst das Regelverhalten durch Anpassung der Filterparameter mit kleinen Beschleunigungs- und Geschwindigkeitsparametern optimiert. Dazu ist ein möglichst identischer Verlauf der Soll- und Istwerte in der Grafikanzeige gewünscht. Sofern die Filterparameter an das System angepaßt sind, können die Grenzwerte für Beschleunigung und Geschwindigkeit mit dieser Betriebsart ermittelt werden. Auch hier wiederum ist eine kleine Soll-Istwertdifferenz für ein möglichst gutes Positionierverhalten anzustreben.

Diese Betriebsart eignet sich weiterhin zur experimentellen Ermittlung der Kompensationsparameter {kfca} und {kfcv}. Dazu werden die anderen Filterparameter auf 0 gesetzt. Die Kompensationsparameter {kfca} und {kfcv} werden nun so eingestellt, daß der Verlauf der Soll- und Istwerte am besten übereinstimmt. Diese Einstellung sollte bei mittlerer Beschleunigung durchgeführt werden

1.7.3.2 Registerkarte CL Response

Auf dieser Registerkarte kann ein Sollwertsprung einer Achse kommandiert werden.

1.7.3.3 Registerkarte OL Response

Abbildung 1-12: Motion Tools, Registerseite "OL Response"

🚧 MCFG - MCFG-DEMO.INI [Online Mode]	
<u>File E</u> dit <u>W</u> indow <u>V</u> iew <u>T</u> ools <u>H</u> elp	
Motion Tools	
Name: A1 Open Loop Close Loop	
send latch command to graphic screen Clear Position	
Point to Point CL Response Digital Filter Open Loop System Response Parameters Parameters Output Voltage {mcp}: 0.00000000E+00 V Delay: 0.00000000E+00 s Image: Image: Reset {mcp} to zero	

In dieser Betriebsart wird auf dem selektierten Achskanal ein Impuls mit angewählter Spannungshöhe und Zeitdauer ausgegeben. Der Regelkreis ist in dieser Betriebsart geöffnet. Wie in Abschitt 1.7.3.1 kann der ausgelöste Bewegungsvorgang (Sprungantwort) auch hier aufgezeichnet und in einem Grafikfenster angezeigt werden. Mit Hilfe dieser Sprungantwort können die Reglerparameter dimensioniert werden. Bei der Erstinbetriebnahme ist insbesondere zu beachten, ob ein positiver Ausgabewert, auch ein Verfahrbewegung in positive Zählrichtung der Istwerterfassung bewirkt. Wenn dies nicht der Fall ist, muss die Phasenzuordnung durch geeigenete Massnahmen richtiggestellt werden, da ansonsten das Antriebssystem beim Schliessen des Regelkreises sofort in eine Richtung ausbrechen würde. Geeignete Massnahmen sind z.B. Invertieren der Stellgrößenausgabe, Invertieren der Istwert-Zählrichtung oder Verdrahtungsänderungen.

Weiterhin kann eine so aufgezeichnete Sprungantwort von stromgesteuerten Systemen direkt verwendet werden für das halbautomatische Filterdesign.

1.7.3.4 Registerkarte Digital Filter

Abbildung 1-13: Motion Tools, Registerseite "Digital Filter"

1111	1CFG -	MCFG-D	EMO.IN	I [Onl	ine Mod	e]							- D ×
File	<u>E</u> dit	<u>W</u> indow	⊻iew	<u>T</u> ools	<u>H</u> elp								
B		X G (3 I	L									
	im M	otion Toa	ls								_		
	-Axis :	Selection			-			Openic			Close Loo	.	
	Nam	ie: A1			J.					_			
	V s	end latch (commar	nd to gra	aphic scre	en		Clear Pos	ition				
	Point	to Point	CL Res	sponse	OL Res	ponse D	igita	l Filter					
	-Digit	tal Filter Pa	rameter	s					1				
							Upd	ate Filter					
			Filter	Parame	ter {kp}:	1,000000	00E	+00					
			Filter	r Param	eter {ki}:	0,000000	00E	+00					
			Filter	Parame	ter {kd}:	0,000000	00E	+00					
			Filter	Parame	ter {kpl}:	0,000000	00E	+00					
	Fo	rw. compe	ns. acc	el, facto	r {kfca}:	0,000000	00E	+00					
		Forw. com	pens, v	el, facto	r {kfev}:	0,000000	00E	+00					
		Update Sy	stem Da	ata		Load Dat	ta fro	om System					
									1				
													11

In dieser Maske können Filterparameter eingegeben, und mit dem Button "Update Filter" temporär aktiviert werden. Um die angezeigten Filterparameter resident in die gespeicherten Systemdaten (System.dat) zu übernehmen, ist zunächst der Button "Update System Data" zu betätigen. Dadurch werden die Werte in die Maske der Systemdaten 1.7.2.3.1 übernommen. Danach können Diese gespeichert (siehe Kapitel 1.7.2.7) werden.

Um die angezeigten Werte aus der Maske der Systemdaten auszulesen kann der Button "Load Data from System" betätigt werden.

1.7.4 Grafische System-Analyse

Eine weitere wichtige Eigenschaft des Hilfsprogramms *mcfg.exe* ist die Möglichkeit verschiedene achsspezifische Regel- und Prozessgrößen am Bildschirm grafisch darzustellen.

1.7.4.1 Setup für die grafische Systemanalyse

Zunächst sind die für die grafische Systemanalyse notwendigen Einstellungen vorzunehmen. Diese werden auf der Formularseite "Project Parameter" [File][Project Parameter] und deren Registerseite Graphic vorgenommen (siehe auch Kapitel 1.4).

C:\LA\MCFG-DEMO.INI	
Environment Graphic Hardware	
▼ show real position Select Colors	Color
✓ show desired position	
Show real velocity	
show desired velocity	
🔽 show Position Grid 🔤 Select Grid Color	
▼ show Velocity Grid	Set to Default
Autosave Log Messages Watch Log Errors	Web Services

Abbildung 1-14: Project Parameter, Registerseite Graphic

In diesem Menü können verschiedene Angaben zur Auswahl der Grafen und die Zuordnung von Farben gemacht werden. Ebenso ist die An- oder Abwahl für Soll- und Istwerte der Positionen und Geschwindigkeiten möglich.

1.7.4.2 Grafik-Analyse-Fenster

Unter dem Menüpunkt [File][Graphic Analysis] wird nachfolgender Bildschirm aufgelegt. Es handelt sich um ein Koordinatensystem mit Zeit, Positions- und Geschwindigkeitsangaben. Die Koordinatenauswahl erfolgt mit den in Kapitel 1.7.4.1 beschrieben Methoden.

Abbildung 1-15: Grafische Sytemanalyse

Die Bedienung erfolgt über die Menüleiste oder durch Rechtsklick in das Grafikfenster. Dadurch öffnet sich folgende Menüauswahl:

1.7.4.3 Skalierung des Grafik-Bildschirms [Graph Scale Parameters]

Im unteren Bildschirmbereich kann die Skalierung für die Grafik-Ausgabe vorgegeben werden. Die Skalierung kann jeweils für Positions-Ist- und Sollwerte und für Geschwindigkeits-Ist- und Sollwerte vorgenommen werden. Für das Aufzeichnen der Ist- und Sollwerte stehen jeweils 1000 Messwerte zur

Verfügung. Diese Messwerte werden in harter Echtzeit im internen Arbeitsspeicher der MCU-G3-Geräte abgelegt. Mit dieser Anzahl kann eine Aufzeichnungsdauer von 1.28s (1000 * Abtastzeit) bei einer eingestellten Zykluszeit von 1.28ms erreicht werden. Sofern die Aufzeichnungsdauer größer als dieser Wert sein soll, werden von der MCU-G3 Wartezeiten zwischen den einzelnen Meßzeitpunkten eingefügt. Somit sind Aufzeichnungen von nahezu beliebiger Dauer möglich. Das zeitgerechte Latchen und die Sicherung der Daten wird dabei auf der MCU-G3 ausgeführt. Ein Latchvorgang kann also gestartet und das Resultat z.B. eine Stunde später am Bildschirm dargestellt werden. Hierbei ist jedoch zu beachten, daß bei jedem Aufzeichnungsvorgang immer nur 1000 Werte aufgezeichnet werden. Bei Aufzeichnung über einen größeren Zeitraum läßt sich die Anzeige dadurch nicht beliebig auflösen. Falls dies gewünscht ist können z.B. die Methoden des "G3-Scanner-Interface" verwendet werden, welche gesondert dokumentiert sind.

Anmerkung: Damit eine Änderung der Wegeinheit- bzw. Winkeleinheit bei der Skalierung wirksam wird, muss vor der Anzeige des Grafikbildschirmes neu gelatcht werden. Dagegen können die Weggrenzwerte, Zeiteinheiten und Zeitgrenzwerte auch ohne erneutes Latchen beliebig verändert werden.

1.7.4.4 Aufzeichnen von Achsbewegungen [Latch Start]

Mit diesem Menüpunkt kann ein Aufzeichnungsvorgang gestartet werden. Im Normalfall wird die Aufzeichnung jedoch durch einen Open Loop Sprung [1.7.3.3] oder durch den Start eines Bewegungsprofils [1.7.3.1] im Fenster Motion Tools [1.7.3] ausgelöst.

1.7.4.5 Grafen anzeigen [Update Screen]

Die gewählten Grafen werden mit den entsprechend spezifizierten Skalierungsparametern am Bildschirm angezeigt. Die Skalierung der vertikalen Achse wird immer in den Farben der Istwerte vorgenommen. Zur grafischen Beurteilung des achsspezifischen Positionier- und Regelverhaltens müssen folgende Punkte zusätzlich in Betracht gezogen werden: die Sollwerte stehen, im Gegensatz zu den Istwerten, immer mit Nachkommastellen zur Verfügung. Daher können die Grafen, gerade bei hoher Auflösung, große Unterschiede aufweisen, insbesondere bei den Geschwindigkeitsgrafen, da diese durch Differentation aus den Weg-Informationen berechnet werden. Ein systembedingter Versatz zwischen Soll- und Istwerten muß ebenfalls berücksichtigt werden, da die Istwerte immer erst zu Beginn eines neuen Abtastintervalls zur Verfügung stehen. Trotz dieser Einschränkungen wird mit Hilfe der Grafikausgabe eine einfache und wirkungsvolle Möglichkeit geschaffen, das Positionier- und Regelverhalten der Antriebsachsen zu optimieren.

1.7.4.6 Grafen speichern [SAVE]

Aktuell angezeigte Grafen, können als Datei mit der Extension .grf auf der Festplatte abgespeichert und später oder auf einem anderen System wiederhergestellt werden.

Eine umfangreichere Möglichkeit komplette Aufzeichnungsdatensätze abzuspeichern bietet das Zusatzprogramm GetGraph.exe. Mit diesem Programm werden die kompletten aufgezeichneten Daten einer Achse direkt von der Steuerung ausgelesen und auf der Festplatte in einer Datei mit der Erweiterung .grb gespeichert. Diese Dateien können mit dem Menüpunkt [Read Graphic from binary file] angezeigt werden.

1.7.4.7 <u>Zoomen</u>

Bei gedrückter Shift-Taste läßt sich mit der linken Maustaste ein Bildschirmbereich auswählen, der nach Loslassen der Maustaste gezoomt dargestellt wird. Durch eine Klick mit der linken Maustaste ins Grafikfenster, bei gedrückter Shift-Taste kann die ursprüngliche Skalierung wiederhergestellt werden.

1.7.4.8 Nullpunkte setzen

Durch eine Klick mit der linken Maustaste auf einen Punkt in der Grafik, bei gedrückter Ctrl-Taste werden die Positions- und Zeitanzeigen unter dp/dt in der Statuszeile, direkt unter der Grafikanzeige abgenullt. Somit kann eine Differenzmessung zu einem anderen Punkt durch Positionieren des Mauscursors erfolgen.

1.7.4.9 <u>Beschleunigungen berechnen</u>

Bei gedrückter Alt-Taste läßt sich mit der linken Maustaste eine Steigungsgerade über einen Geschwindigkeitsanstieg legen. Nach Loslassen der Maustaste öffnet sich das Fenster für das Filterdesign. In diesem wird der Beschleunigungswert der Geradensteigung angezeigt.

1.7.4.10 Reglerparameter für Stromgesteuerte Systeme berechnen

Für Stromgesteuerte Antriebssysteme lässt sich halbautomatisch ein Filterparametersatz berechnen. Hierzu ist zunächst die Sprungantwort des offenen Regelkreises aufzunehmen. Hierbei sollte man einen Geschwindigkeitsverlauf mit linearem Geschwindigkeitsanstieg erhalten. Bei gedrückter ALT-Taste kann man nun in diesen Geschwindigkeitsanstieg mit der linken Maustaste eine Gerade legen. Nach Loslassen der Maustaste wird ein Parameterfenster geöffnet, in dem die Grenzfrequenz des geschlossenen Lageregelkreises eingetragen werden kann (Default 30 Hz). Mit dem Button OK kann dann die Parameterberechnung gestartet werden. Die Parameter werden in der Registerkarte "Digital Filter" des Motion-Tools-Fensters eingetragen und können hier sofort für einen Test übernommen werden.

1.7.4.11 Anzeige des Schleppfehlerverlaufs

Im Auswahlmenü Mode kann die Option "Position Error" angewählt werden. Nach einem Screen-Update wird dann der Sollwertverlauf und der Schleppfehlerverlauf über die aufgezeichnete Verfahrbewegung im Grafikfenster dargestellt.

1.7.4.12 Anzeige des Verlaufs der Stellgrößenausgabe

Im Auswahlmenü Mode kann die Option "Motor Command Port" angewählt werden. Nach einem Screen-Update wird dann der Sollwertverlauf und der Verlauf der Stellgrößenausgabe in V über die aufgezeichnete Verfahrbewegung im Grafikfenster dargestellt.

1.7.5 Der integrierte Text-Editor

Der in die Entwicklungsumgebung *mcfg.exe* integrierte Texteditor wurde speziell auf die Erstellung und Bearbeitung von rw_SymPas Quelltexten ausgelegt. Es ist jedoch auch möglich mit einem anderen Text-Editor solche Quelltext-Files zu erstellen.

Abbildung 1-16: Text Editor

In der Kommandoleiste können verschiedene Aktionen aus dem Editor ausgelöst werden. Dazu gehört hauptsächlich das Laden und Speichern von *rw_SymPas*-Programmdateien sowie die Compilierung und Ausführung der entsprechenden Files.

1.7.5.1 Die Kopfzeile des Editorfensters

Da es möglich ist, gleichzeitig mehrere Textdateien in gleichzeitig zu bearbeiten, werden in der Kopfzeile der jeweiligen Editor-Fenster die entsprechenden Dateinamen angezeigt.

1.7.5.2 Die Statuszeile

ist die unterste Zeile des Editors [Abbildung 1-16].

Abkürzung	Beschreibung
R	(Row) Hier wird die Nummer der Zeile angezeigt, in der sich der Cursor momentan
	befindet. Die erste Zeile eines Textes hat die Nummer 1. Die Zählung bezieht sich auf den Textanfang und nicht auf die Position des Cursors innerhalb des Fensters.
С	(Column) Zeigt die momentane Spaltenposition des Cursors an und bezieht sich ebenfalls auf den Quelltext.
Modified	Sobald eine Änderung im aktiven Editorfenster vorgenommen wurde, wird dies mit diesem Meldungstext signalisiert.
Insert (Overwrite)	Bedeutet, dass momentan der »Einfügemodus« aktiviert ist. Neu eingegebene Zeichen werden ab der Position des Cursors in den bereits bestehenden Text eingefügt, rechts davon stehender Text wird entsprechend verschoben. Mit der Taste [Einf] kann zwischen Einfügen (Insert) und Überschreiben (Overwrite) umgeschaltet werden. Im letzteren Fall wird alter Text ab der Cursorposition durch neue Eingabe ersetzt, also überschrieben.

1.7.5.3 Editor-Kommandos

Die Kommandos zur Textbearbeitung wie Grundbewegungen des Cursors, Markieren von Text, Kopieren und Löschen von einzelnen Zeichen, Wörtern oder markierten Blöcken sind weitestgehend kompatibel zu den gängigen Windowseditoren und werden deshalb hier nicht weiter erläutert.

Es werden die gängigen Maus- und Tastaturoperationen sowie Drag-Drop-Operationen unterstützt.

1.7.5.4 Spezialfunktionen des Editors CNC-Edit

Bei aktiver Editor-Umgebung wird die Menüleiste mit speziellen nur im Editormodus verfügbaren Funktionen erweitert. Nachfolgend werden diese Spezialfunktionen beschrieben.

1.7.5.4.1 <u>Menu Compile</u>

Dieses Menü ruft den integrierten Compiler NCC auf und übersetzt den Inhalt des momentan angewählten Editors. Sofern der Compiler eine fehlerhafte Quelltextzeile findet, wird eine Fehlermeldung mit Fehlerart und Fehlerzeile ausgegeben. Nach Quittierung des Fehlers durch den Benutzer wird der Editor-Cursor auf die fehlerhafte Zeile positioniert.

1.7.5.4.1.1 Syntaktische SAP-Programmüberprüfung [Syntax Check]

Mit der Option [Syntax Check] erfolgt lediglich eine syntaktische Überprüfung des Quelltextprogramms.

1.7.5.4.1.2 Syntax-Überprüfung und Erzeugung eines CNC-Files [File]

Die Option [File] ist mit [Syntax Check] identisch, erzeugt jedoch bei fehlerlosem Compilierungslauf zusätzlich eine Datei mit dem momentanen Quelltext-Dateinamen und Suffix *.cnc.* Diese Datei kann beispielsweise mit dem Ladebefehl *txbf()* **[PHB / Kapitel 4.4.132]** durch ein PC-Applikations-Programm an die CNC-Task übertragen und dort im Standalone-Mode ausgeführt werden. Sofern das SAP-Programm keine *\$TASK*-Anweisung enthält, wird das CNC-File für die momentan angewählte Tasknummer [Compile][Select Task] generiert.

Die Erzeugung eines CNC-Files kann auch mit dem Windows-Konsolenprogramm *ncc.exe* [BHB / Kapitel 4.3] vorgenommen werden.

1.7.5.4.2 <u>Menu Run</u>

Dieses Menü dient zur Programmablaufkontrolle von einer oder mehreren CNC-Tasks.

1.7.5.4.2.1 Programmablaufkontrolle für eine CNC-Task starten [Trace current selected CNC-Task]

Die Funktion [Trace current selected CNC-Task] ist mit der im vorhergehenden Kapitel beschriebenen Funktion [Compile][File] identisch, lädt aber zusätzlich das erzeugte CNC-File mit Hilfe des PCAP-Befehls txbf() [PHB / Kapitel 4.4.132] auf die Steuerungsbaugruppe und veranlaßt die CNC-Task mit Hilfe des PCAP-Befehls startcnct() [PHB / Kapitel 4.4.127] das aktuelle im Editor enthaltene CNC-Programm automatisch auszuführen. Sofern der Ladevorgang erfolgreich ausgeführt werden konnte, wird in dem Editor-Fenster die von der CNC-Task aktuell bearbeitete Quelltextzeile markiert und zeigt somit die Abarbeitungsreihenfolge der CNC-Programmdatei an. Die markierte Quelltextzeile wird in den aktiven Ausschnitt des Editor-Bildschirmfensters gebracht und zusätzlich wird die entsprechende Quelltextzeilennummer in der Statuszeile angezeigt. Der Trace-Vorgang kann mit der Taste [ESC] jederzeit abgebrochen werden.

Sofern keine *\$TASK*-Anweisung im SAP-Programm vorhanden ist, wird das CNC-File für die aktuell ausgewählte Tasknummer [F3] generiert und in der entsprechenden Task abgearbeitet.

1.7.5.4.2.2 CNC-Task anhalten [Stop current selected CNC-Task]

Die Option [Stop current selected CNC-Task] bewirkt, daß die angewählte CNC-Task [F3] das momentan geladene CNC-File nicht mehr weiter abarbeitet. In diesem Zusammenhang muß beachtet werden, daß auch freigegebene EVENT-Handling-Prozeduren nicht mehr abgearbeitet werden.

1.7.5.4.2.3 <u>CNC-Task fortsetzen [Continue Trace in current CNC-Task]</u>

Mit der Option [Continue Trace in current CNC-Task] wird das momentan in der CNC-Task [F3] geladene Programm fortgesetzt. Hierzu wird jedoch zuvor geprüft, ob das Editor-Quelltextprogramm mit dem geladenen CNC-File konsistent ist. Ist dies der Fall, so wird wiederum die aktuelle Quelltextzeile markiert und im aktiven Bildschirmbereich des Editors angezeigt.

1.7.5.4.3 <u>Alle CNC-Tasks erneut starten [Restart all CNC-Tasks]</u>

Diese Menu-Funktion startet alle CNC-Tasks (0 bis 3). Alle geladenen CNC-Programme werden vom Programmbeginn an gestartet.

1.7.5.4.4 Alle CNC-Tasks stoppen [Stop all CNC-Tasks]

Alle CNC-Tasks werden angehalten und die dort abgelegten CNC-Programme gestoppt.

1.7.5.4.5 <u>Alle CNC-Programme fortsetzen [Continue all CNC-Tasks]</u>

Alle gestoppten CNC-Programme werden mit dieser Funktion fortgesetzt.

1.7.5.4.6 Menu Spooler

Mit den Spooler-Optionen können die momentan gespoolten Befehle gestartet [Start ...], gestoppt [Stop ...] und gelöscht [Delete ...] werden. Die Befehle werden bei allen Achsen, in welchen gespoolte Befehle vorhanden sind, synchron ausgelöst.

1.7.5.4.7 <u>Menu Setup</u>

1.7.5.4.7.1 Bahnparameter setzen [Set CNC-specific parameter]

In diesem Menü werden CNC-spezifische Programmdaten wie Bahnbeschleunigung und Bahngeschwindigkeit eingegeben. Diese Parameter lassen sich jedoch auch über vordefinierte *System-Parameter* im SAP-Anwenderprogramm programmieren.

Dieses Menü ist als Bestandteil des Menüs Konfigurationsparameter vorhanden.

1.7.5.4.7.2 Compiler-Betriebsart setzen (in Vorbereitung!) [Set Compiler Mode]

In diesem Menü kann zwischen den beiden Programmiersprachen *rw_SymPas* oder G-Code-Programmierung (in Anlehnung an DIN 66025 bzw. RS-274) ausgewählt werden. Der Compiler NCC führt die syntaktische Überprüfung für die angewählte Programmiersprache aus.

1.7.5.4.7.3 <u>CNC-Task auswählen [Select CNC-Task]</u>

In diesem Menü kann eine Task-Nummer (0 bis 3) ausgewählt werden, die zur Task-Steuerung und CNC-File-Erzeugung benötigt wird.

1.7.5.4.8 Menu Display

In diesem Menü werden CNC-Task spezifische Informationen am Bildschirm angezeigt.

1.7.5.4.9 Menu System

In diesem Menü kann das Schließen [Close ...] bzw. Öffnen [Open ...] der Lageregelkreise aller Achsen veranlaßt werden. Ebenso ist es möglich mit Hilfe der Rücksetzanweisung [Reset ...] alle Achskanäle rückzusetzen. Intern wird bei [Reset ...] ein evtl. ablaufendes CNC-Programm mit dem PCAP-Befehl *stopcnct()* [PHB / Kapitel 4.4.129] angehalten. Anschließend wird die Steuerungsbaugruppe mit dem PCAP-Befehl *rs()* [PHB / Kapitel 4.4.120] rückgesetzt.

1.7.5.5 Programmausführung im Einzelschritt-Betrieb

Im integrierten Editor ist es möglich SAP-Programme im Einzelschritt-Betrieb auszuführen und zu testen. Um in den Einzelschrittbetrieb zu gelangen aktiviert man im Menü Trace – Trace Options die Option Single-Step-Mode aktiviert werden. Wenn nun die Programmausführung per Menü oder Shortcut gestartet wird, befindet sich das System im Einzelschrittmodus. Alternativ kann an einer beliebigen Stelle im Programm die Anweisung

startcnct (TaskNummer);

eingefügt werden. In diesem Fall wird die nachfolgende Zeile noch ausgeführt, danach verbleibt das System im Einzelschrittbetrieb.

Danach kann das Programm zeilenweise per Menü oder mit dem Shortcut F10 ausgeführt werden. Mit dem Shortcut F8 wird das Programm im Normalmodus an der jeweiligen Stelle fortgesetzt. Hierbei ist zu beachten, daß der Programmcode von includierten Files wie eine einzelne Zeile behandelt wird.

1.7.6 Dialogfunktionen [Dialog Functions Menu]

Mit Hilfe dieses Menüs können verschiedene Zustände der Steuerungsbaugruppe abgefragt, Ausgänge gesetzt, Achskanäle rückgesetzt und Verfahrprofile gestartet werden.

1.7.6.1 Achsenstatus anzeigen [Open Axis Status Window]

Dieser Menüpunkt öffnet ein achsspezifisches Statusfenster des momentan selektierten Achskanals [F2]. Das Fenster kann beliebig am Bildschirm plaziert, verkleinert und vergrößert werden. Es können auch mehrere Statusfenster für verschiedene Achsen gleichzeitig am Bildschirm angezeigt werden.

Aufbau des Achsenstatusfensters [ACTUAL VALUES]

Name	Bedeutung
Axis #	Nummer des selektierten Achskanals.
Name	Symbolischer Achsname {sn} [Kapitel 1.7.2.1.1].
{DP}	Desired Position (Soll-Position). Die Anzeige erfolgt unter Berücksichtigung der gewählten Einheit
	und Präzision [Kapitel 1.7.2.1.4 und 1.7.2.1.5].
{RP}	Real Position (Ist-Position). Wie {DP}.
{AXST}	In diesem Feld wird das bitkodierte axst-Statusregister in
	Hexadezimalschreibweise angezeigt [PHB / Kapitel 4.4.53- rdaxst()]
{LSM}	Momentan frei verfügbarer Spoolbereich in Bytes.

1.7.6.2 Achsenstatus-Anzeige beenden [Close Axis Status Window]

Dieser Menüpunkt schließt das Statusfenster des momentan angewählten Achskanals [F2].

1.7.6.3 Achsenstatus-Report [Display Axis Status Report]

Dieser Menüpunkt bewirkt die Anzeige verschiedener Statusinformationen von allen im System vorhandenen Achskanälen. Der Anwender erhält einen schnellen Überblick über den Zustand des kompletten Antriebssystems. Die Anzeige erfolgt im 40-Spalten-Modus, damit das Ablesen auch aus größeren Entfernungen möglich ist.

Aufbau des Achsenstatusreports [AXIS STATUS REPORT]

Name	Bedeutung
Axis-Name	Symbolischer Achsname {sn} [Kapitel 1.7.2.1.1].
Actual Position	Ist-Position {rp}. Die Anzeige erfolgt unter Berücksichtigung der gewählten Einheit und
	Präzision [Kapitel 1.7.2.1.4 und 1.7.2.1.5].
Flag L	Ein Hard- oder Software-Endschalter wurde erkannt.
Flag M	Der maximal erlaubte Schleppfehler wurde überschritten.
Flag C	Achse ist zur Zeit in Lageregelung.
Flag P	Das Profilende ist erreicht.

1.7.6.4 Bitinformationen des Achsenstatus-Register axst anzeigen [Display Detailed Axis Status]

Mit dieser Funktion wird der aktuelle Zustand des achsspezifischen [F2] axst-Registers angezeigt. Die Anzeige resultiert aus den im axst-Register abgelegten Bitinformationen. In der ersten Spalte (S-Spalte) wird der aktuelle Zustand des jeweiligen Bits angezeigt. Die jeweiligen Bitinformationen werden mit Hilfe ihrer Bitnummer im axst-Wort, ihrer symbolischen Namen und ihrer Funktionen näher beschrieben. Die letzte Spalte (Error/Status) zeigt an, ob es sich bei dem jeweiligen Bit um ein Error- bzw. ein Status-Flag handelt.

1.7.6.5 Anzeige der Digital-Eingänge und Statusinformationen [Show Inputs / Status]

Mit dieser Funktion wird der aktuelle Zustand der Digitaleingänge und diverser Statusinformationen des selektierten Achskanals [F2] angezeigt.

Aktuelle Eingangs- und Statusinformationen der Steuerungsbaugruppe [INPUTS / STATUS]

Name	Bedeutung
{digi}	Zustand der Digitaleingänge. [PHB / Kapitel 4.4.60.1].
{digi}	Feld NDX: Sofern ein Inkrementalgeber mit Nullspur (Index) eingesetzt wird, wird dessen Zustand
	ebenfalls hier angezeigt [PHB / Kapitel 4.4.60.1].
{digi}	Feld EE: Sofern ein Fehler des Meßwerterfassungsystems vorliegt, wird dies hier angezeigt [PHB /
	Kapitel 4.4.60.1].
{digi}	Feld NDXL: Hier wird ein Flankenübergang von NDX angezeigt. [PHB / Kapitel 4.4.60.1].
{digi}	Feld STRBL: Hier wird ein Flankenübergang des Strobesignals angezeigt [PHB / Kapitel 4.4.60.1].
{epc}	Anzahl der EEPROM-Programmierzyklen [PHB / Kapitel 4.4.70 - rdepc()].
{edv}	Zeigt die Gültigkeit der EEPROM-Daten an [PHB / Kapitel 4.4.78 - rdifs()].
{pfe}	Sofern die Betriebsspannung unter 4.75V abgefallen war, wird dies hier angezeigt.
	Nach jedem Neueinschalten des PC ist dieses Flag auf "1" gesetzt [PHB / Kapitel 4.4.78 - rdifs()].
{wdog}	Zeigt an, daß die Baugruppe infolge eines Watchdogfehlers zurückgesetzt wurde [PHB / Kapitel
	4.4.78 - rdifs()].
{iae}	Invalid Access Error. Diese Flag zeigt einen internen unerlaubten Zugriffsfehler an. [PHB / Kapitel
	4.4.78 - rdifs()].

Zustanus informationen	
Name	Bedeutung
Error-Nr	Sofern ein Fehler durch ein SAP-Programm verursacht wird, wird in diesem Feld
	eine systeminterne Fehlernummer angezeigt. Das SAP-Programm wird in diesem
	Fall angehalten .
Error-Line	Sofern die oben beschriebene Error-Nr ungleich 0 ist, wird in diesem Feld
	zusätzlich die Zeilennummer des SAP-Programmes angezeigt, in welcher der
	Fehler aufgetreten ist.
Current Program	Sofern ein SAP-Programm auf die Steuerungsbaugruppe übertragen wurde, wird
	hier der entsprechende Dateiname angezeigt.
Running / Not Running	Sofern ein SAP-Programm in Bearbeitung ist, wird die Anzeige auf Running
	geschaltet.
Running in task #	Dies ist die CNC-Task-Nummer, in welcher das aktuelle SAP-Programm
	abgearbeitet wird. ([F3] = Task-Nummern-Auswahl)
Stack	Zeigt den momentan frei verfügbaren Stackbereich (Bytes) der CNC-Task an.
Current source line #	Zeigt die momentan ausgeführte Quelltextzeilennummer an.
Common Variables	Der aktuelle Zustand aller frei verfügbaren Common Integer und Common
CI0CI99 und	Double Variablen wird hier angezeigt.
CD0 CD99	[PHB / Kapitel 4.4.56 - rdcd()], [PHB / Kapitel 4.4.57 - rdci()] u. [PHB / Kapitel
	6.3.1]

Zustands-Informationen der CNC-Task [CNC-TASK-STATUS / COMMON VARIABI ES]

1.7.6.6 Anzeige von CNC-Task-Status und Common-Variablen [Show CNC-Task Status / Variables]

1.7.6.7 Editieren der Digital-Ausgänge [Edit Outputs]

In diesem Menü können die Digitalausgänge gesetzt bzw. rückgesetzt werden **[PHB / Kapitel 4.4.143 - wrdigo()]**. Das Setzen bzw. Rücksetzen erfolgt mit Hilfe von Maus-Klicks bzw. durch Drücken der Blank (Leerzeichen) -Taste.

Anmerkung: Der ausgewählte Achskanal [F2] hat für das Setzen/Rücksetzen der Ausgänge keine Bedeutung, d.h. daß alle Ausgänge der Baugruppe über die unterschielichen Achskanäle adressiert werden können.

1.7.6.8 System Rücksetzen [System Reset]

In diesem Menü kann das achsspezifische Rücksetzen [F2] wie auch das komplette System-Rücksetzen durchgeführt werden.

Die Wirkungsweise von *Reset selected axis* wird im **[PHB / Kapitel 4.4.42 - ra()]** beschrieben, die Funktionsweise von *Reset hole system* im **[PHB / Kapitel 4.4.120 - rs()]**.

1.7.7 Automatik Funktionen [Automatic Functions Menu]

In diesem Menü können CNC-Programme gestartet, gestoppt und fortgesetzt werden. Bei den CNC-Programmen handelt es sich um Autocode-Files, die durch Kompilierung von SAP-Quelltext-Programmen in der CNC-Editor-Umgebung [Kapitel 1.7.5] oder mit Hilfe des Kommandozeilen-Compilers *ncc.exe* automatisch generiert wurden.

Die CNC-Programme werden beim Übersetzen der SAP-Quelltextdatei unter Zuhilfenahme eines Compilersteuerbefehls (\$TASK) oder durch Anwahl einer CNC-Task-Nummer (Funktionstaste [F3] im *mcfg.exe*-Programm) für eine bestimmte CNC-Task angelegt. Es können bis zu 4 verschiedene CNC-Programme gleichzeitig abgearbeitet werden. Hierzu stehen die CNC-Tasks 0 bis 3 zur Verfügung.

Die nachfolgend beschriebenen Funktionen sind unter anderem auch bei den Spezialfunktionen des Editors CNC-Edit zugänglich [Kapitel 1.7.5.4].

1.7.7.1 CNC-Programm laden [Download CNC-Program]

In diesem Menü kann zunächst ein CNC-File ausgewählt werden. Die Auswahl erfolgt mit Hilfe der Taste [+] oder der Eingabe-Taste. Um das ausgewählte Programm zu aktivieren, muß die Auswahl mit dem *Download-File*-Befehl abgeschlossen werden. Für die Dateiauswahl wird immer das Dateisuffix *.cnc* vorgeschlagen.

Der *Download*-Befehl überträgt das ausgewählte CNC-File an die Steuerungsbaugruppe, welches unter anderem auch die Information enthält in welche CNC-Task dieses Autocodefile übertragen werden muß. Die entsprechende Task wird zuvor angehalten. Dieser Zustand bleibt auch nach der Übertragung wirksam.

1.7.7.2 CNC-Task erneut starten [Restart current selected CNC-Task]

Diese Menü-Funktion startet die momentan angewählte CNC-Task. Diese kann mit der Funktionstaste [F3] ausgewählt werden.

Das dort geladene CNC-Programm wird vom Programmbeginn an gestartet.

1.7.7.3 CNC-Task stoppen [Stop current selected CNC-Task]

Die aktuell angewählte CNC-Task [F3] wird angehalten und damit das dort abgelegte CNC-Programm gestoppt.

1.7.7.4 <u>CNC-Task fortsetzen [Continue current selected CNC-Task]</u>

Ein gestopptes CNC-Programm kann mit dieser Funktion fortgesetzt werden.

1.7.7.5 <u>Alle CNC-Tasks erneut starten [Restart all CNC-Tasks]</u>

Diese Menü-Funktion startet alle CNC-Tasks (0 bis 3). Alle geladenen CNC-Programme werden vom Programmbeginn an gestartet.

1.7.7.6 Alle CNC-Tasks stoppen [Stop all CNC-Tasks]

Alle CNC-Tasks werden angehalten und die dort abgelegten CNC-Programme gestoppt.

1.7.7.7 Alle CNC-Programme fortsetzen [Continue all CNC-Tasks]

Alle gestoppten CNC-Programme werden mit dieser Funktion fortgesetzt.

1.7.7.8 System Rücksetzen

Dieses Menü ist identisch mit dem im Kapitel 1.7.6.8 beschriebenen Menü.

2 Anhang

2.1 Abbildungsverzeichnis

Abbildung 1-1: Startbildschirm nach einer Erstinstallation	9
Abbildung 1-2: Projektparameter festlegen	10
Abbildung 1-3: Steuerung booten	12
Abbildung 1-4: Bildschirmmeldung bei Konfigurationsfehlern	13
Abbildung 1-5: System Daten, Registerseite achsspezifische Parameter	15
Abbildung 1-6: System Daten, Registerseite Motion Parameters	18
Abbildung 1-7: System Daten, Registerseite Motor specific parameters (hier Servo-Motor-Achse)	19
Abbildung 1-8: System Daten, Registerseite Motor specific parameters (hier Stepper-Motor-Achse)	21
Abbildung 1-9: System Daten, Registerseite Digital Inputs	22
Abbildung 1-10: System Daten, Registerseite Digital Outputs	25
Abbildung 1-11: Motion Tools, Registerseite "Point to Point"	29
Abbildung 1-12: Motion Tools, Registerseite "OL Response"	30
Abbildung 1-13: Motion Tools, Registerseite "Digital Filter"	31
Abbildung 1-14: Project Parameter, Registerseite Graphic	32
Abbildung 1-15: Grafische Sytemanalyse	33
Abbildung 1-16: Text Editor	36

2.2 Tabellenverzeichnis

Tabelle 1-1: Wirkungsweise von Softwareendlagen	17
Tabelle 1-2: Wirkungsweise von Digital-Eingängen	23
Fortsetzung Tabelle 1-3: Wirkungsweise von Digital-Eingängen	24
Tabelle 1-4 [.] Wirkungsweise von Digital-Ausgängen	26